

Contig error correction based on linked-read sequencing data

Andreea Dréau, Clément Birbes, Christophe Klopp, Matthias Zytnicki

November 23rd, 2020

SeqB M

SeqOccIn Project

- Axis 1 Genome assembly and structural variation detection
- Axis 2 Epigenetics marks detection
- Axis 3 Metagenomics analysis
- Axis 4 High molecular weight DNA extraction and evolution of the IT infrastructure

- Context: New advances in the field of genomic sequencing
- Aims:
 - Identify the best practice to obtain the highest quality assembly at a specific price
 - Oevelopment of new methods for de novo assembly
- Species: Cattle, Maize, Pig, Quail, Goat, Sheep
- Data: Oxford Nanopore, Pacific Bioscience, 10x Chromium, Hi-C, Bionano optical mapping

Chromosome fragment

Oxford Nanopore

~16% errors 30 kb N50 (up to ~1 Mb)

PacBio CLR

~15% errors 50 kb N50 (up to ~200 kb)

PacBio HiFi

~1% errors 15 kb N50 (up to ~40 kb)

10x Chromium + Illumina paired ends

. .

~300kb molecule length

Genome Assembly Pipeline

Contig assembly with erroneous long read data

Construction of long chromosomal parts without N's based on overlapping reads and *an assembly graph*

Contig assembly with erroneous long read data

Construction of long chromosomal parts without N's based on overlapping reads and *an assembly graph*

Polishing

Correction of **sequencing** errors based on the alignment of short and long reads to the contigs

Splitting

Correction of connection errors based on coverage drop

Polishing

Correction of **sequencing** errors based on the alignment of short and long reads to the contigs

Splitting

Correction of connection errors based on coverage drop ...

Scaffolding with Hi-C reads

Align Hi-C reads and connect contigs into scaffolds/chromosomes based on contacts

[Lieberman-Aiden et al., Science, 2009]

Hi-C heat map

Hi-C heat map

Hi-C scaffolding methods

- align reads on contigs
- split contigs
- scaffold construction

Split mis-assembled contig

Hi-C heat map (zoom)

그는 그는 것 같은 것 같은 생활이다.

	300 KB	278 400 KB	278 800 KB	279 200 KB	279 600 KB	280 000 KB	280 40
	- I - I	1 1	1		- I I	- I I	- I
278 00					an an tha an an tha An Ann an Ann	an a bha	
					n an the Calify a suite	1. 1. 2. 1. 1. 1.	la na s A le s
0 KB							
278 40							
278 800 KB							
279 200 KB							
9 600 KB							
27	1. A. A. A.	and the second	and the state of the			ALLEY BELL	218.3

13

Can we use a more homogeneous read coverage?

Long-range "linked-read" sequencing using 10x Genomics

- generated from long DNA molecules
- tagged with a specific barcode
- computational reconstruction of single molecules
- provides low-cost long-range information

Hi-C vs 10x Chromium heat map: Contig assembly errors

Hi-C vs 10x Chromium heat map: Contig assembly errors

Can we find contig assembly errors with 10x molecules?

- Checks each window for a minimum number of spanning molecules
- Cuts contigs at windows with insufficient coverage surrounded by windows with sufficient coverage.

Problem

Not adapted to contigs assemblies based on long reads which are more accurate => no correct cuts in our assemblies

Molecule coverage on a contig (10kb interval)

Mean molecule length on a contig (10kb interval)

Split contigs with 10x linked reads

- Align linked-reads on contigs
- Identify molecules (barcode, beginning and ending position, number of reads)
- Compute molecule profiles per interval (10kb)
 - Number of starting molecules
 - Number of ending molecules
 - Molecule coverage
 - Mean read density/molecule
 - Mean molecule length
- Identify outliers intervals and split contigs
- Re-connect contigs with Hi-C scaffolding methods

Results without splitting

---- Contigs (wtdbg2) ----- Scaffolds(3d-dna) from contigs

Impact on contig length

Impact on scaffold length

Impact on scaffold length on a high contiguity assembly

Impact on scaffold length on a high contiguity assembly

Impact on scaffold length on a high contiguity assembly

- Stronger constraints for a split
- Adding a scaffolding step based on linked reads
 - build graph based on molecules profiles
 - connect branchless paths of contigs