
Hide and Mine in Strings: 
Hardness and Algorithms

Giulia Bernardini, Alessio Conte, Garance Gourdel, Roberto 
Grossi, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, 

Giulia Punzi, Leen Stougie, Michelle Sweering

GAC
Published in ICDM 2020



Problem & Motivation

SeqBIM 2020: Hide and Mine in strings: Hardness and Algorithms



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Motivation

1

Release to the public for pattern mining



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Motivation

1

Sensitive patterns !



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Motivation

1

Hide the sensitive patterns !



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Pattern Mining

2

For a given integer    ,

We describe the text by its k-mers.

Applications in:
• Route planning [Chen et al, ‘15]
• Marketing [Agrawal et al. ‘95]
• Clinical diagnosis [Koboldt et al ‘13]



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

3

For a given integer    ,

We describe the text by its k-mers.

Given a set     of forbidden k-mers to hide.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

3

For a given integer    ,

We describe the text by its k-mers.

Given a set     of forbidden k-mers to hide.

Forbidden
k-mers



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

4

Non-forbidden
k-mers

For a given integer    ,

We describe the text by its k-mers.

Given a set     of forbidden k-mers to hide.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?
● We preserve the non-forbidden k-mers, and their order.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?
● We preserve the non-forbidden k-mers, and their order.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?
● We preserve the non-forbidden k-mers, and their order.

We might not have a full text!



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?
● We preserve the non-forbidden k-mers, and their order.

We might not have a full text!

● We can use a special character “#” as a separator.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

5

Non-forbidden
k-mers

How can we reconstruct a 
text with those k-mers?
● We preserve the non-forbidden k-mers, and their order.
● We can use a special character “#” as a separator.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

6

● We preserve the non-forbidden k-mers, and their order.
● We can use a special character “#” as a separator.

Plenty of possibilities!



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

6

● We preserve the non-forbidden k-mers, and their order.
● We can use a special character “#” as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by #  X_tr = GAC#ACC#CCC#CAT



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

6

● We preserve the non-forbidden k-mers, and their order.
● We can use a special character “#” as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by #  X_tr = GAC#ACC#CCC#CAT

Closest w.r.t. edit distance  X_ed = GAC#AA#ACCC#CAT [Bernardini et al. CPM’20]



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

[Bernardini et al. PKDD’19]

6

● We preserve the non-forbidden k-mers, and their order.
● We can use a special character “#” as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by #  X_tr = GAC#ACC#CCC#CAT

Closest w.r.t. edit distance  X_ed = GAC#AA#ACCC#CAT

Shortest solution  X_min = GACCC#CAT

[Bernardini et al. CPM’20]



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

7

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the 
former positions of forbidden k-mers



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

7

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the 
former positions of forbidden k-mers

=> We replace them by letters in    .



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

7

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the 
former positions of forbidden k-mers

=> We replace them by letters in    .

X=GACCC#CAT  =>  Z=GACCCGCAT 



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

7

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the 
former positions of forbidden k-mers

=> We replace them by letters in    .

X=GACCC#CAT  =>  Z=GACCCGCAT 

We add k-mers : CCG, CGC, and GCA.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

7

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the 
former positions of forbidden k-mers

=> We replace them by letters in    .

X=GACCC#CAT  =>  Z=GACCCGCAT 

We add k-mers : CCG, CGC, and GCA. Can we still do frequent 
pattern mining?



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

Example:

a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

Example:

a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

Example:

X= GAC#ACC#CCC#CAT
a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

Example:

X= GAC#ACC#CCC#CAT

Z= GACGACCGCCCGCAT

a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



The Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

String sanitization

8

For frequent pattern mining, we want to minimize the number of     -ghosts.

Example:

X= GAC#ACC#CCC#CAT

Z= GACGACCGCCCGCAT

=> GAC is a τ-ghost !

a k-mer       is a τ-ghost if :

and

Definition:
Given         ,



Hide and Mine problem

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Hide and Mine

s.t.

Threshold on frequency

Length of forbidden pattern

Set of forbidden patterns

String with # to replace

9



Contributions

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms



Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Decision variant 
Hardness

10

Hide and Mine Decision: Decision variant 

Can we replace the #s in X without introducing any τ-ghosts ?



Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Decision variant 
Hardness

Hide and Mine Decision is NP-complete by reduction from Bin Packing.

10

Hide and Mine Decision: Decision variant 

Can we replace the #s in X without introducing any τ-ghosts ?



Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Hide and Mine 
approximation

11

Hide and Mine is NP-hard by reduction from the decision variant.



Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Hide and Mine 
approximation

Hide and mine has no     -approximation for any             , unless                   .

11

Hide and Mine is NP-hard by reduction from the decision variant.



● Hide and Mine (      ): Optimization version

● Hide and Mine Decision (         ) : Decision version 

● Hide and Mine Minimum Threshold : 
Find the minimum          ,
such that there are no    -ghosts. 

   s.t.

Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 12

Hide and Mine 
Minimum Threshold



● Hide and Mine (      ): Optimization version

● Hide and Mine Decision (         ) : Decision version 

● Hide and Mine Minimum Threshold : 
Find the minimum          ,
such that there are no    -ghosts. 

   s.t.

Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 12

Hide and Mine Minimum Threshold is NP-hard,
 by reduction from the decision variant.

Hide and Mine 
Minimum Threshold



● Hide and Mine (      ): Optimization version

● Hide and Mine Decision (         ) : Decision version 

● Hide and Mine Minimum Threshold : 
Find the minimum          ,
such that there are no    -ghosts. 

   s.t.

Hardness

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 12

Hide and Mine Minimum Threshold is NP-hard,
 by reduction from the decision variant.

Hide and Mine Minimum Threshold has no     -approximation 
for any             , unless                   .

Hide and Mine 
Minimum Threshold



Algorithms:
Integer Linear Programming

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Context of a #

13

characters on the left-side characters on the right-side 

Definition: the context of this # is (U,V).

Property: The context is enough to know what k-mers will be 
added by a replacement. If we replace the #by           we add all k-
mers in        .



1) Regroup the #s by their contexts:    number of different contexts
2) Number the contexts and rename the #s:
     has context                     .     number of     .
3) Determine the set of critical k-mers:
k-mers that may become ghost because of the replacement
4) We want to find all       : this represents the number of time we 
replaced a      by         .
5) We compute for each replacement what critical k-mers it would 
add.

Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 14

Idea



1) Regroup the #s by their contexts:    number of different contexts
2) Number the contexts and rename the #s:
     has context                     .     number of     .
3) Determine the set of critical k-mers:
k-mers that may become ghost because of the replacement
4) We want to find all       : this represents the number of time we 
replaced a      by         .
5) We compute for each replacement what critical k-mers it would 
add.

Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 14

Idea



1) Regroup the #s by their contexts:    number of different contexts
2) Number the contexts and rename the #s:
     has context                     .     number of     .
3) Determine the set of critical k-mers:
k-mers that may become ghost because of the replacement
4) We want to find all       : this represents the number of time we 
replaced a      by         .
5) We compute for each replacement what critical k-mers it would 
add.

Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 14

Idea



1) Regroup the #s by their contexts:    number of different contexts
2) Number the contexts and rename the #s:
     has context                     .     number of     .
3) Determine the set of critical k-mers:
k-mers that may become ghost because of the replacement
4) We want to find all       : this represents the number of time we 
replaced a      by         .
5) We compute for each replacement what critical k-mers it would 
add.

Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 14

Idea



1) Regroup the #s by their contexts:    number of different contexts
2) Number the contexts and rename the #s:
     has context                     .     number of     .
3) Determine the set of critical k-mers:
k-mers that may become ghost because of the replacement
4) We want to find all       : this represents the number of time we 
replaced a      by         .
5) We compute for each replacement what critical k-mers it would 
add.

Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms 14

Idea



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Find a solution
(set of forbidden 
replacements: 
replacements that 
create a forbidden 
pattern)

15

Hide and Mine
Decision variant



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

0 if     does not become a ghost 
1 if     does become a ghost 

Goal: Find 

That minimize

15

Hide and Mine



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

ILP: polynomial 
algorithms

16

Integer Linear Programming runs in linear time  in the number of 
constraints when the number of variables is a constant.



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

ILP: polynomial 
algorithms

Hide and Mine decision variant has a polynomial time algorithm if either:

a) The size of the alphabet and the number of contexts of the #s are constants.

b) The size of the alphabet and k are constants.

c) The number of critical k-mers and k  are constants.

16

Integer Linear Programming runs in linear time  in the number of 
constraints when the number of variables is a constant.



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

ILP: polynomial 
algorithms

17

Hide and Mine has a polynomial time algorithm if either:

1) The following are constants:
a) the size of the alphabet, 
b) the number of contexts of the #s,
c) the number of critical k-mers.

2) The following are constants:
a) k,
b)  the number of critical k-mers.



Algorithms - Heuristic

SeqBIM 2020: Hide and Mine in strings: Hardness and Algorithms

To be publish soon in the journal version



Algorithms

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Greedy heuristic

1) Compute statistics on the number of k-mer without # in X.

2) For the i-th # in the string :

● Let      be the string with all previous # replaced.

● For           , consider the string U j V (U,V the context of #i).

● If it contains a forbidden pattern,               and       is undefined.

● If not,      is the set of all k-mers in U j V and        the set of all 

k-mers    in      s.t.                                .

3) Choose the j (if there is one) that minimizes : 

18



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

To be publish soon in the journal version



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Summary

● Implemented in C++ available on GitHub (soon).
● Gurobi solver used to solve the ILP.
● 5 datasets :

● OLD: Oldenburg
● TRU: Trucks
● MSN: MSNBC
● DNA: Escherichia coli genome
● SYN: Uniformly random strings

● Comparison of ILP and Heuristic with TPM: part III of [Bernardini et 
al. PKDD’19]

19



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Summary

20



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Varying τ

21



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Varying k

22



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Varying |S|

23



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Distortion

is a non-forbidden pattern.where

24



Experiments

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Runtime

25



Advertisement
CPM Advertisement !



Take home message

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms



Take home message

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

- Hide and Mine and its variants are all NP-hard and hard to approximate. 



Take home message

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

- Hide and Mine and its variants are all NP-hard and hard to approximate. 

- Hide and Mine and its decision variant can be solved via ILP, which works in 

polynomial time under realistic assumptions on the input parameters. 



Take home message

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

- Hide and Mine and its variants are all NP-hard and hard to approximate. 

- Hide and Mine and its decision variant can be solved via ILP, which works in 

polynomial time under realistic assumptions on the input parameters. 

- Experiments on both synthetic and real world datasets that confirm the 

theoretical findings.



Take home message

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

- Hide and Mine and its variants are all NP-hard and hard to approximate. 

- Hide and Mine and its decision variant can be solved via ILP, which works in 

polynomial time under realistic assumptions on the input parameters. 

Thank you for your attention !

- Experiments on both synthetic and real world datasets that confirm the 

theoretical findings.


	Slide: 1
	Slide: 2
	Slide: 3
	Slide: 4
	Slide: 5
	Slide: 7
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 9
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 10 (4)
	Slide: 10 (5)
	Slide: 10 (6)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 12 (5)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 13 (7)
	Slide: 15
	Slide: 16
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 20
	Slide: 21
	Slide: 22 (1)
	Slide: 22 (2)
	Slide: 22 (3)
	Slide: 22 (4)
	Slide: 22 (5)
	Slide: 23
	Slide: 24
	Slide: 25 (1)
	Slide: 25 (2)
	Slide: 26
	Slide: 27
	Slide: 28
	Slide: 29
	Slide: 30
	Slide: 31
	Slide: 32
	Slide: 33
	Slide: 34
	Slide: 35
	Slide: 36
	Slide: 37
	Slide: 38 (1)
	Slide: 38 (2)
	Slide: 38 (3)
	Slide: 38 (4)
	Slide: 38 (5)

