Hide and Mine in Strings: Hardness and Algorithms

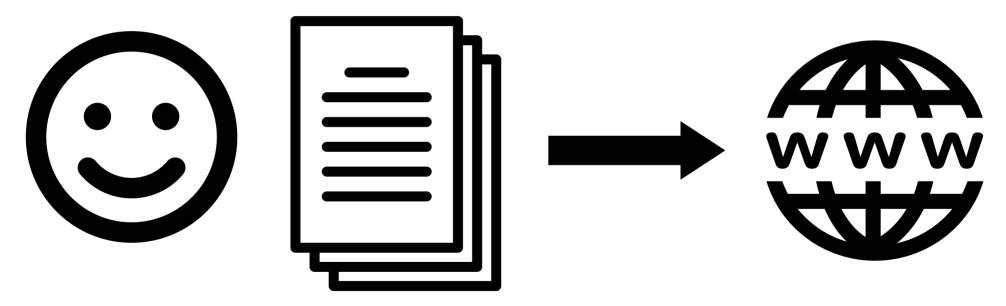
Published in ICDM 2020

GAC

Giulia Bernardini, Alessio Conte, **Garance Gourdel**, Roberto Grossi, Grigorios Loukides, Nadia Pisanti, Solon P. Pissis, Giulia Punzi, Leen Stougie, Michelle Sweering

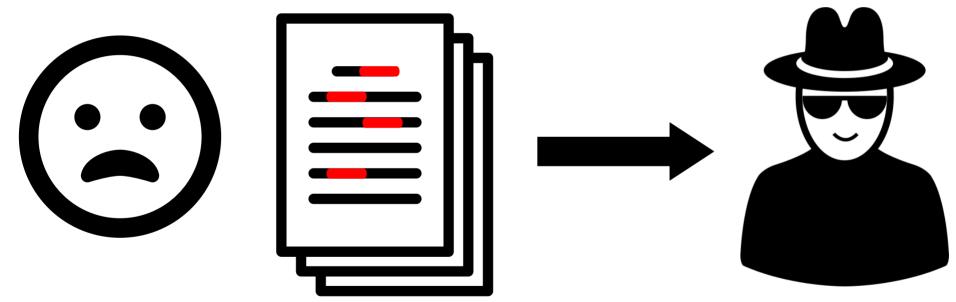
Problem & Motivation

Release to the public for pattern mining



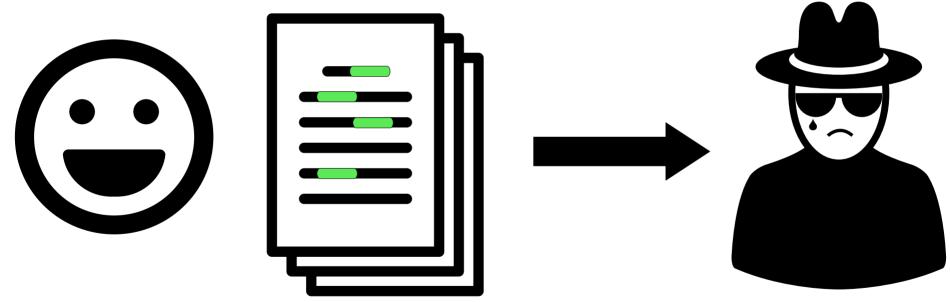
Motivation

Sensitive patterns !



Motivation

Hide the sensitive patterns !



Pattern Mining

For a given integer k ,

We describe the text by its k-mers.

k = 3

Applications in:

- · Route planning [Chen et al, '15]
- Marketing [Agrawal et al. '95]
- · Clinical diagnosis [Koboldt et al '13]

W = GACAAAAACCCAT

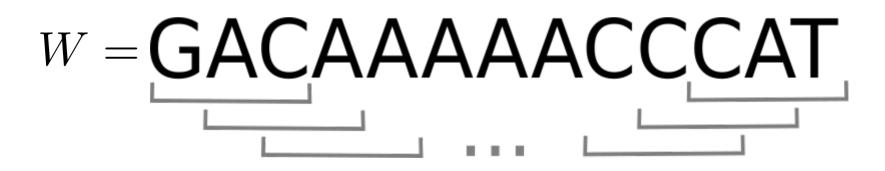
String sanitization

For a given integer k ,

We describe the text by its k-mers.

Given a set *S* of forbidden k-mers to hide. $S = \{ACA, CAA, AAA, AAC, CCA\}$

k = 3



String sanitization

For a given integer k ,

We describe the text by its k-mers.

Given a set *S* of forbidden k-mers to hide. $S = \{ACA, CAA, AAA, AAC, CCA\}$

k = 3

String sanitization

For a given integer k ,

We describe the text by its k-mers.

Given a set *S* of forbidden k-mers to hide. $S = \{ACA, CAA, AAA, AAC, CCA\}$

k = 3

GACAAAACCCAT Gden S CAT

Non-forbidden k-mers

String sanitization

k-mers

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ **GACAAAACCCAT Non-forbidden**

How can we reconstruct a text with those k-mers?

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ GACAAAAACCCAT CCC Non-forbidden k-mers CAT

How can we reconstruct a text with those k-mers?

• We preserve the non-forbidden k-mers, and their order.

String sanitization

GACCC

k-mers

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ **GACAAAACCCAT Non-forbidden**

How can we reconstruct a text with those k-mers?

• We preserve the non-forbidden k-mers, and their order.

SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

ΓΔΤ

String sanitization

k-mers

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ **GACAAAACCCAT Non-forbidden**

How can we reconstruct a text with those k-mers?

• We preserve the non-forbidden k-mers, and their order.

GACCC CAT

We might not have a full text!

String sanitization

k-mers

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ **GACAAAACCCAT Non-forbidden**

How can we reconstruct a text with those k-mers?

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

GACCC CAT

We might not have a full text!

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ GACAAAAACCCAT CCC Non-forbidden k-mers CAT

How can we reconstruct a text with those k-mers?

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

X=GACCC#CAT

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

Plenty of possibilities!

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by # X_tr = GAC#ACC#CCC#CAT

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by # X_tr = GAC#ACC#CCC#CAT

Closest w.r.t. edit distance X_ed = GAC#AA#ACCC#CAT [Bernardini et al. CPM'20]

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

- We preserve the non-forbidden k-mers, and their order.
- We can use a special character "#" as a separator.

Plenty of possibilities!

Separate all non-forbidden k-mers by # X_tr = GAC#ACC#CCC#CAT

Closest w.r.t. edit distance X_ed = GAC#AA#ACCC#CAT [Bernardini et al. CPM'20]

Shortest solution X_min = GACCC#CAT [Bernardini et al. PKDD'19]

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

X=GACCC#CAT

Problem: we cannot leave the *#*, they indicate the former positions of forbidden k-mers

String sanitization

 $k=3 \quad S=\{ACA,CAA,AAA,AAC,CCA\} \quad W=GACAAAAACCCAT$

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the former positions of forbidden k-mers

=> We **replace** them by letters in Σ .

String sanitization

 $k=3 \quad S=\{ACA,CAA,AAA,AAC,CCA\} \quad W=GACAAAAACCCAT$

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the former positions of forbidden k-mers

=> We **replace** them by letters in Σ .

X=GACCC#CAT => Z=GACCCGCAT

String sanitization

 $k=3 \ S=\{ACA,CAA,AAA,AAC,CCA\} \ W=GACAAAAACCCAT$

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the former positions of forbidden k-mers

=> We **replace** them by letters in Σ .

X=GACCC#CAT => Z=GACCCGCAT

We add k-mers : CCG, CGC, and GCA.

String sanitization

7

 $k=3 \ S=\{ACA,CAA,AAA,AAC,CCA\} \ W=GACAAAAACCCAT$

X=GACCC#CAT

Problem: we cannot leave the #, they indicate the former positions of forbidden k-mers

=> We **replace** them by letters in Σ .

X=GACCC#CAT => Z=GACCCGCAT

We add k-mers : CCG, CGC, and GCA. Can we still do frequent pattern mining?

String sanitization

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

For frequent pattern mining, we want to minimize the number of τ -ghosts.

k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

For frequent pattern mining, we want to minimize the number of τ -ghosts.

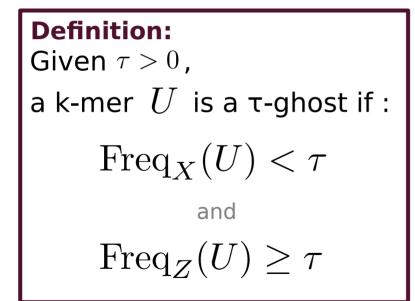
Definition: Given au > 0, a k-mer U is a au-ghost if : $\operatorname{Freq}_X(U) < au$

and

$$\operatorname{Freq}_Z(U) \ge \tau$$

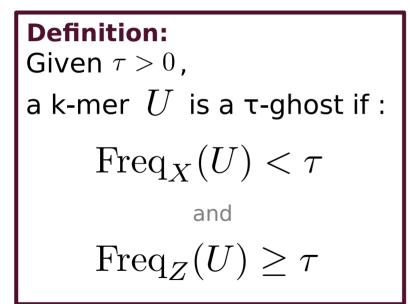
k = 3 $S = \{ACA, CAA, AAA, AAC, CCA\}$ W = GACAAAAACCCAT

For frequent pattern mining, we want to minimize the number of τ -ghosts.



Example:

For frequent pattern mining, we want to minimize the number of τ -ghosts.



Example:

$$au = 2$$

For frequent pattern mining, we want to minimize the number of τ -ghosts.

Definition: Given $\tau > 0$, a k-mer U is a τ -ghost if : $\operatorname{Freq}_X(U) < \tau$ and $\operatorname{Freq}_Z(U) \ge \tau$

Example:

$$\tau = 2$$

X= **GAC**#ACC#CCC#CAT

For frequent pattern mining, we want to minimize the number of τ -ghosts.

Definition: Given $\tau > 0$, a k-mer U is a τ -ghost if : $\operatorname{Freq}_X(U) < \tau$ and $\operatorname{Freq}_Z(U) \geq \tau$

Example:

$$\tau = 2$$

X= **GAC**#ACC#CCC#CAT

 $\mathsf{Z}=\mathbf{GACGAC}\mathsf{CGCCCGCAT}$

For frequent pattern mining, we want to minimize the number of τ -ghosts.

Definition: Given $\tau > 0$, a k-mer U is a τ -ghost if : $\operatorname{Freq}_X(U) < \tau$ and $\operatorname{Freq}_Z(U) \geq \tau$

Example: $\tau = 2$ X= GAC#ACC#CCC#CAT Z= GACGACCGCCCGCAT => GAC is a τ -ghost !

Hide and Mine

Input and Parameters

Threshold on frequency \mathcal{T} Length of forbidden pattern kSet of forbidden patterns SString with # to replace

 $X = X_1 \# X_2 \# \dots \# X_\delta$ s.t. $\forall i \in [1, \delta], |X_i| \ge k - 1$

Goal: Replace all #s in X so that the number of τ-ghosts is minimum and there is no forbidden pattern.

Contributions

Decision variant Hardness

Hide and Mine Decision: Decision variant

Can we replace the #s in X without introducing **any** τ -ghosts ?

Decision variant Hardness

Hide and Mine Decision: Decision variant

10

Can we replace the #s in X without introducing **any** τ -ghosts?

Hide and Mine Decision is NP-complete by reduction from Bin Packing.

Hide and Mine approximation

Hide and Mine is NP-hard by reduction from the decision variant.

Hide and Mine approximation

Hide and Mine is NP-hard by reduction from the decision variant.

Hide and mine has no lpha -approximation for any $lpha \geq 1$, unless P = NP.

Hardness

Hide and Mine Minimum Threshold

• Hide and Mine Minimum Threshold : Find the minimum $\tau_1 \ge \tau$, such that there are no τ_1 -ghosts.

Hardness

Hide and Mine Minimum Threshold

 au_1 s.t. SGAC

• Hide and Mine Minimum Threshold : Find the minimum $\tau_1 \ge \tau$, such that there are no τ_1 -ghosts.

Hide and Mine Minimum Threshold is **NP-hard**, by reduction from the decision variant.

Hardness

Hide and Mine Minimum Threshold

 au_1 s.t. SGAC

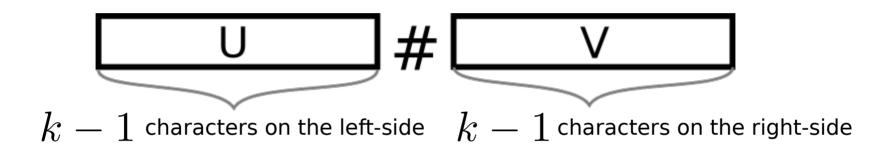
• Hide and Mine Minimum Threshold : Find the minimum $\tau_1 \ge \tau$, such that there are no τ_1 -ghosts.

Hide and Mine Minimum Threshold is **NP-hard**, by reduction from the decision variant.

Hide and Mine Minimum Threshold has no α -approximation for any $\alpha \geq 1$, unless P = NP

Algorithms: Integer Linear Programming

Context of a



Definition: the context of this # is (U,V).

Property: The context is enough to know what k-mers will be added by a replacement. If we replace the #by $j \in \Sigma$ we add all k-mers in UjV.

1) Regroup the #s by their contexts: $\gamma\,$ number of different contexts

Idea

14

1) Regroup the #s by their contexts: γ number of different contexts 2) Number the contexts and rename the #s: $\#_i$ has context $C_i = (U_i, V_i)$. δ_i number of $\#_i$.

Idea

14

 Regroup the #s by their contexts: ^γ number of different contexts
Number the contexts and rename the #s: #i has context C_i = (U_i, V_i). δ_i number of #_i.
Determine the set of critical k-mers: {N_ℓ}_{ℓ∈[λ]} k-mers that may become ghost because of the replacement

Idea

1) Regroup the #s by their contexts: γ number of different contexts 2) Number the contexts and rename the #s: $\#_i$ has context $C_i = (U_i, V_i)$. δ_i number of $\#_i$. 3) Determine the set of critical k-mers: $\{N_\ell\}_{\ell \in [\lambda]}$ k-mers that may become ghost because of the replacement 4) We want to find all $x_{i,j}$: this represents the number of time we replaced a $\#_i$ by $j \in \Sigma$.

Idea

- 1) Regroup the #s by their contexts: γ number of different contexts 2) Number the contexts and rename the #s:
- $\#_i$ has context $C_i = (U_i, V_i)$. δ_i number of $\#_i$.
- 3) Determine the set of critical k-mers: $\{N_\ell\}_{\ell \in [\lambda]}$
- k-mers that may become ghost because of the replacement
- 4) We want to find all $x_{i,j}$: this represents the number of time we replaced a $\#_i$ by $j \in \Sigma$.
- 5) We compute for each replacement what critical k-mers it would add.

Hide and Mine Decision variant

- γ number of distinct contexts present in X;
- δ_i number of occurrences of letter $\#_i$ in X, for $i \in [\gamma]$;
- λ number of distinct critical length-k strings;
- $\alpha_{\ell,j}^i$ additional number of occurrences of N_ℓ introduced by replacing a $\#_i$ with a letter $j \in \Sigma$, for $\ell \in [\lambda]$;
- e_{ℓ} difference $(\tau 1) \operatorname{Freq}_X(N_{\ell})$, for $\ell \in [\lambda]$.

Find a solution
$$\begin{cases} x_{i,j} \ge 0 & \forall (i,j) \in [\gamma] \times \Sigma \\ x_{i,j} = 0 & \forall (i,j) \in \mathcal{F} \text{ (set of forbidden} \\ \sum_{i \in [\gamma], j \in \Sigma} \alpha_{\ell,j}^i x_{i,j} \le e_{\ell} & \forall \ell \in [\lambda] & \text{replacements: replacements that } \\ \sum_{j \in \Sigma} x_{i,j} = \delta_i & \forall i \in [\gamma] & \text{pattern} \end{cases}$$

Hide and Mine

 γ number of distinct contexts present in X;

$$\delta_i$$
 number of occurrences of letter $\#_i$ in X, for $i \in [\gamma]$; γ_{ℓ} 0 if N_{ℓ} doe

- λ number of distinct critical length-k strings;
- $\alpha_{\ell,j}^{i}$ additional number of occurrences of N_{ℓ} introduced by replacing a $\#_{i}$ with a letter $j \in \Sigma$, for $\ell \in [\lambda]$;
- e_{ℓ} difference $(\tau 1) \operatorname{Freq}_X(N_{\ell})$, for $\ell \in [\lambda]$.

- z_{ℓ} 0 if N_{ℓ} does not become a ghost
 - 1 if N_ℓ does become a ghost

$$\begin{array}{ll} \text{Goal: Find} & x \in \mathbb{Z}^{\gamma \times |\Sigma|} \left\{ \begin{array}{ll} x_{i,j} \geq 0 & & \forall (i,j) \in [\gamma] \times \Sigma \\ x_{i,j} = 0 & & \forall (i,j) \in \mathcal{F} \\ z_{\ell} \geq 0 & & \forall \ell \in [\lambda] \\ \sum_{\ell \in [\gamma], j \in \Sigma} \alpha_{\ell,j}^{i} x_{i,j} - k \delta z_{\ell} \leq e_{\ell} & \forall \ell \in [\lambda] \\ \sum_{j \in \Sigma} x_{i,j} = \delta_{i} & & \forall i \in [\gamma] \end{array} \right.$$

ILP: polynomial algorithms

Integer Linear Programming runs in linear time in the number of constraints when the number of variables is a constant.

ILP: polynomial algorithms

16

Integer Linear Programming runs in linear time in the number of constraints when the number of variables is a constant.

Hide and Mine decision variant has a polynomial time algorithm if either:

- a) The size of the alphabet and the number of contexts of the #s are constants.
- b) The size of the alphabet and k are constants.
- c) The number of critical k-mers and k are constants.

ILP: polynomial algorithms

Hide and Mine has a polynomial time algorithm if either:

- 1) The following are constants:
 - a) the size of the alphabet,
 - b) the number of contexts of the #s,
 - c) the number of critical k-mers.
- 2) The following are constants:
 - a) k,
 - b) the number of critical k-mers.

Algorithms - Heuristic

To be publish soon in the journal version

Greedy heuristic

- 1) Compute statistics on the number of k-mer without # in X.
- 2) For the i-th # in the string :
 - Let Z_i be the string with all previous # replaced.
 - For $j\in\Sigma$, consider the string U j V (U,V the context of #i).
 - If it contains a forbidden pattern, $S_j = \emptyset$ and $S_j^{<\tau}$ is undefined.
 - If not, S_j is the set of all k-mers in U j V and $S_j^{<\tau}$ the set of all k-mers Y in S_j s.t. $\mathrm{Freq}_{Z_i}(Y) < \tau$.

 $Y \in S_i^{<\tau}$

3) Choose the j (if there is one) that minimizes : $\sum [au - \operatorname{Freq}_{Z_i}(Y)]^{-1}$

To be publish soon in the journal version

Summary

- Implemented in C++ available on GitHub (soon).
- Gurobi solver used to solve the ILP.
- 5 datasets :
 - OLD: Oldenburg
 - TRU: Trucks
 - MSN: MSNBC
 - DNA: Escherichia coli genome
 - SYN: Uniformly random strings
- Comparison of ILP and Heuristic with TPM: part III of [Bernardini et al. PKDD'19]

TABLE I: (a) Dataset characteristics. (b) Default values used.

Dataset	length n	alphabet size $ \Sigma $	no sens patterns S	no sens positions $ \mathcal{P} $	pattern length k	threshold τ
OLD	85,563	100	[60, 320]	[926, 5673]	[3, 6]	[3, 15]
TRU	5,763	100	[10, 70]	[363, 3813]	[2, 5]	[5, 30]
MSN	4,698,764	17	[60, 480]	[16792, 133590]	[3, 8]	[100, 300]
DNA	4,641,652	4	[30, 60]	[715, 1617]	[9, 15]	[5, 30]
SYN	20,000,000	10	[10, 1000]	[1967, 2001226]	[3, 6]	[5, 20]

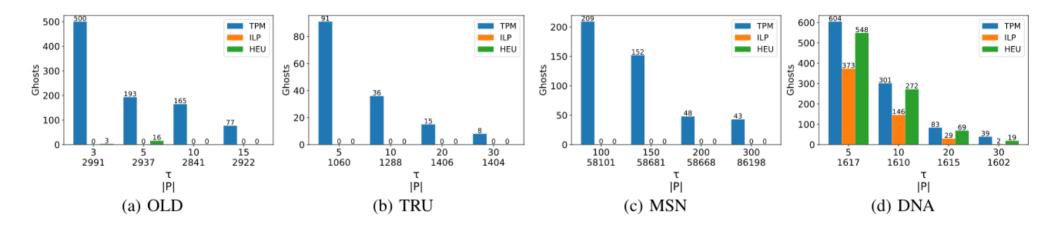
(a)

Dataset	no sens patterns	pattern length	threshold
	$ \mathcal{S} $	k	au
OLD	120	6	10
TRU	30	3	20
MSN	240	8	200
DNA	50	11	20
SYN	100	5	10

(b)

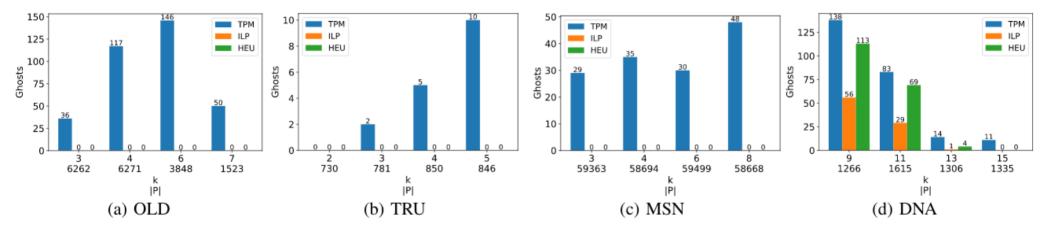
SeqBIM 2020: Hide and Mine in Strings: Hardness and Algorithms

Varying τ

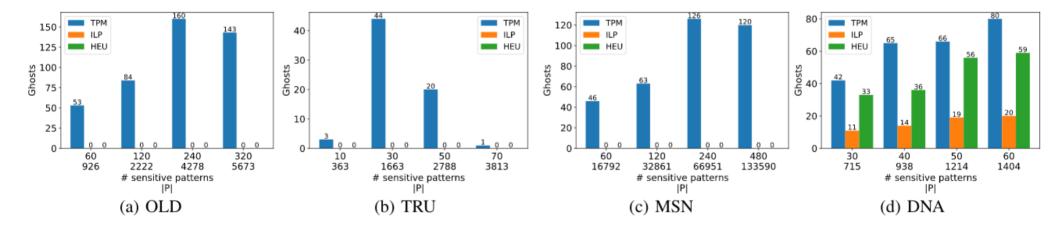


Varying k

22

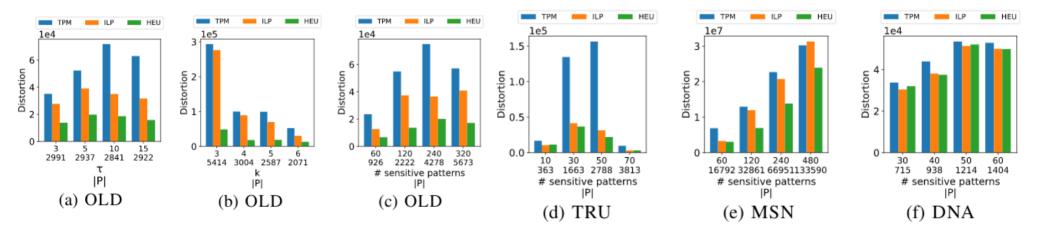


Varying |S|

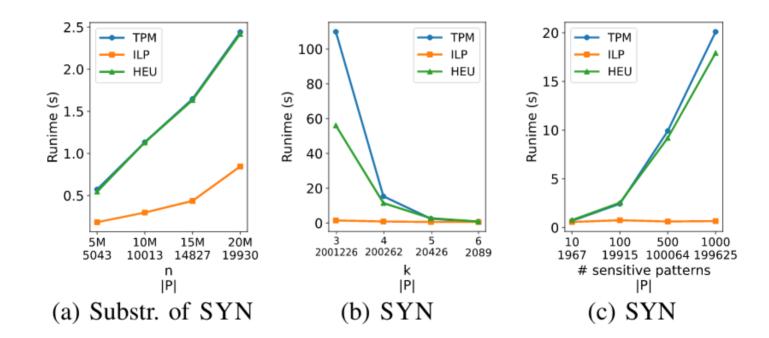


Distortion

$\sum_U (\mathrm{Freq}_X(U) - \mathrm{Freq}_Z(U))^2 \text{ where } \ \mathbf{U} \in \Sigma^k \text{ is a non-forbidden pattern.}$



Runtime



CPM Advertisement !

CPM 2021

32nd Annual Symposium on Combinatorial Pattern Matching Wrocław, Poland, July 5–7, 2021 Submission deadline January 29, 2021 (AoE) http://cpm2021.ii.uni.wroc.pl

- Hide and Mine and its variants are all NP-hard and hard to approximate.

- Hide and Mine and its variants are all NP-hard and hard to approximate.
- Hide and Mine and its decision variant can be solved via ILP, which works in polynomial time under realistic assumptions on the input parameters.

- Hide and Mine and its variants are all NP-hard and hard to approximate.
- Hide and Mine and its decision variant can be solved via ILP, which works in polynomial time under realistic assumptions on the input parameters.
- Experiments on both synthetic and real world datasets that confirm the theoretical findings.

- Hide and Mine and its variants are all NP-hard and hard to approximate.
- Hide and Mine and its decision variant can be solved via ILP, which works in polynomial time under realistic assumptions on the input parameters.
- **Experiments** on both synthetic and real world datasets that **confirm the theoretical findings**.

