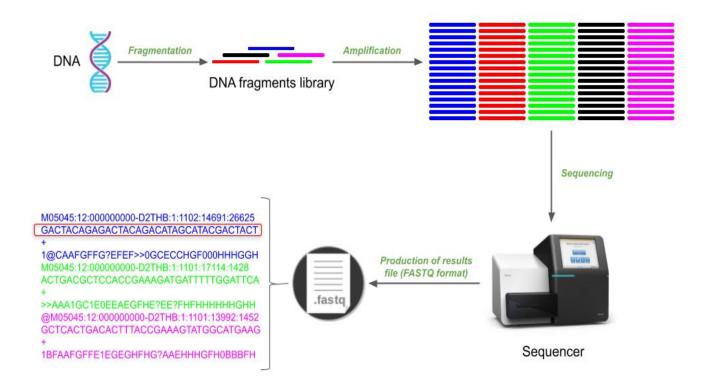
UMI-Gen: a new UMI-based read simulator for variant calling evaluation in paired-end sequencing

Vincent SATER

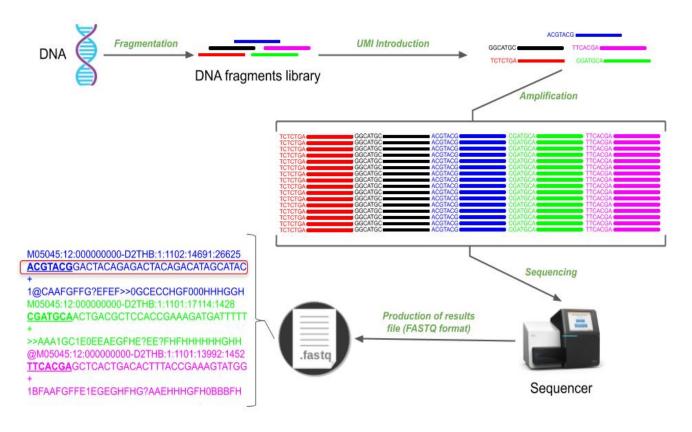
Thierry LECROQ, Pierre-Julien VIAILLY, Elise PRIEUR-GASTON, Philippe RUMINY, Caroline BÉRARD and Fabrice JARDIN.

SeqBIM 2020

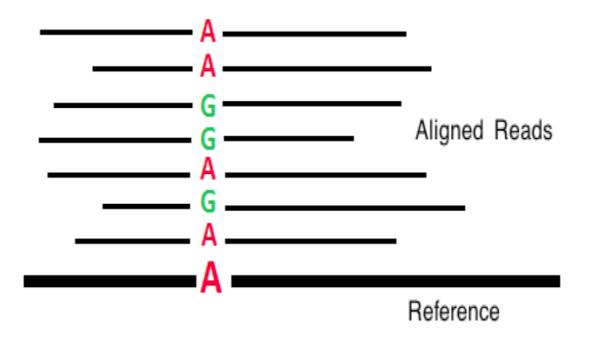
23 November 2020



Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	000000	000	0
Introduction				

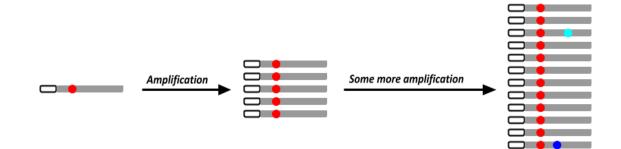

Next Generation Sequencing (NGS)

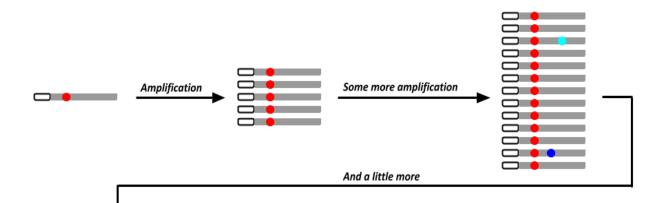
Introduction	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
What are U	JMIs ?			

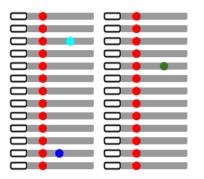

- Unique Molecular Identifier
- Short arbitrary nucleotide sequences
- Increased usage in Next Generation Sequencing since 2015

Introduction	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion 0
Introduction				
UMIs in	NGS			

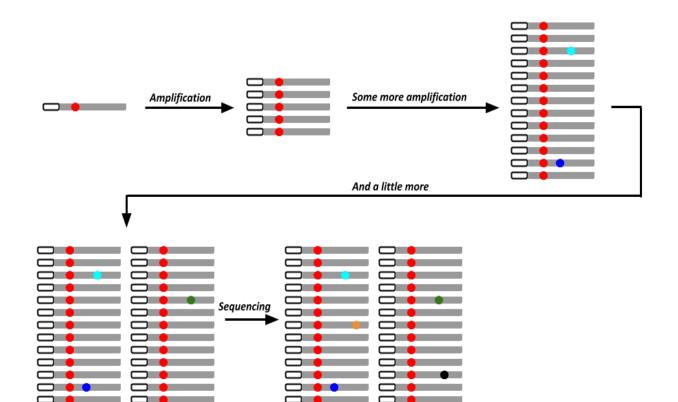
Introduction ○○○●○○○○	UMI-Gen 000	Results & Sample Validation	Application	Conclusion O
Introduction				
Aligning	sequences t	to the reference ger	nome	
Referen	ce gene/genome	Mapping to	gene/genome	


Introduction ○○○○●○○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
Variant Ca	lling			

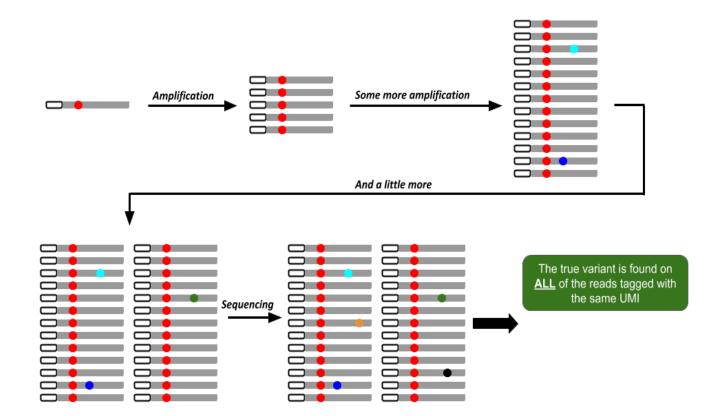

Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory				



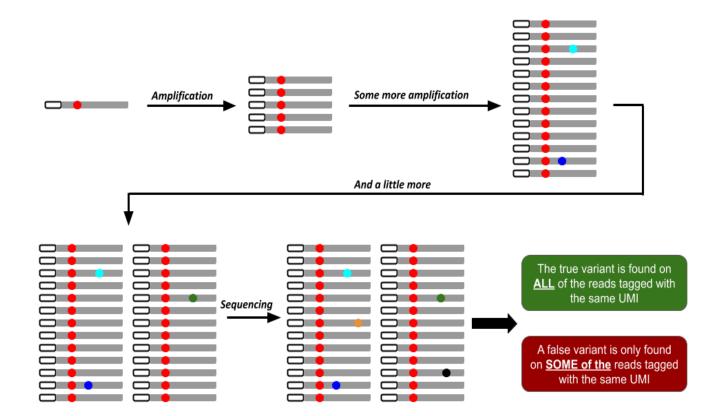
Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory	/			



Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory				

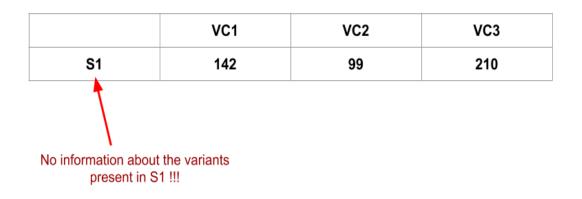


Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory	1			



Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory	у			

SATER Vincent


Introduction ○○○○○●○○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The theory	у			

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The proble	em			

	VC1	VC2	VC3
S1	142	99	210

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The probl	em			

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The proble	em			

	VC1	VC2	VC3
S1	142	99	210

False positives ???

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The proble	em			

	VC1	VC2	VC3
S1	142	99	210

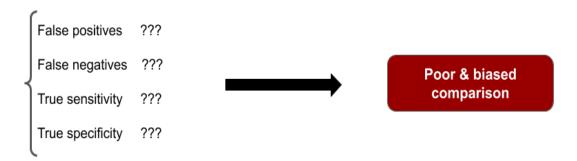
False positives ???

False negatives ???

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The proble	em			

	VC1	VC2	VC3
S1	142	99	210

- False positives ???
- False negatives ???
- True sensitivity ???

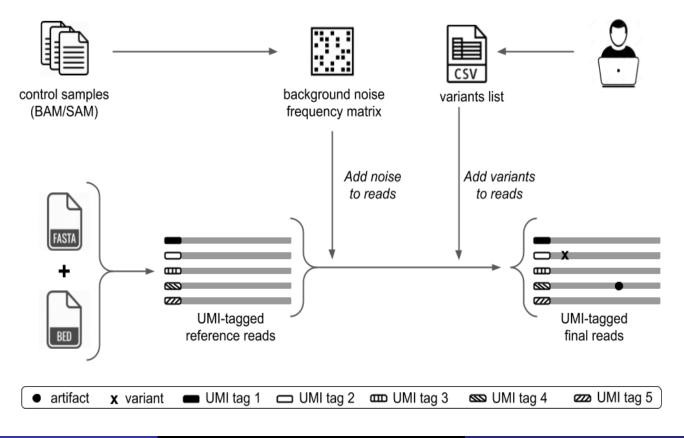

Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The probl	em			

	VC1	VC2	VC3
S1	142	99	210

- False positives ???
- False negatives ???
- True sensitivity ???
- True specificity ???

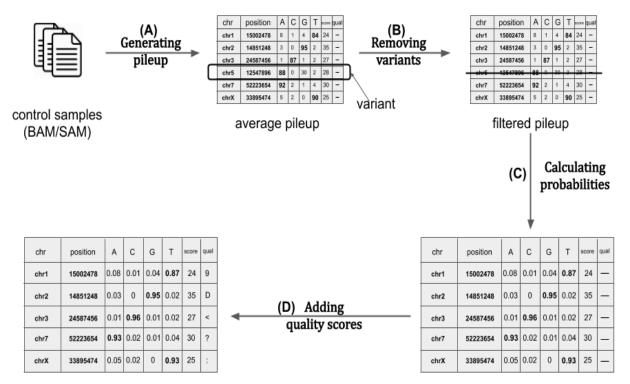
Introduction ○○○○○●○	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The probl	em			

	VC1	VC2	VC3
S1	142	99	210



Introduction ○○○○○○●	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Introduction				
The solution	on			

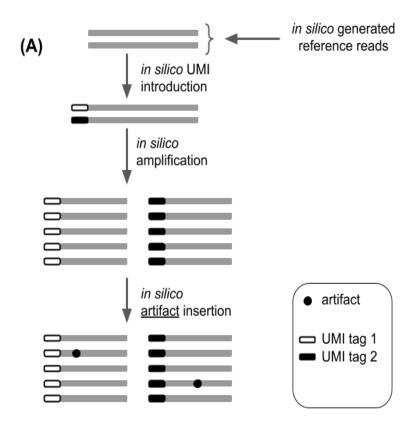
- Using a read simulator that mimic real tumor samples
- Real variants in the produced samples must be known
- No UMI-based read simulators available \rightarrow we developed UMI-Gen


Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	00	000000	000	0
UMI-Gen				

UMI-Gen's workflow

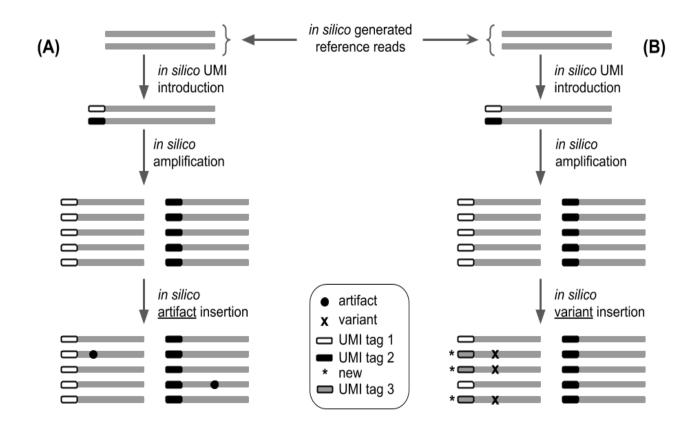
Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	$\bigcirc \bigcirc \bigcirc$	000000	000	0
UMI-Gen				

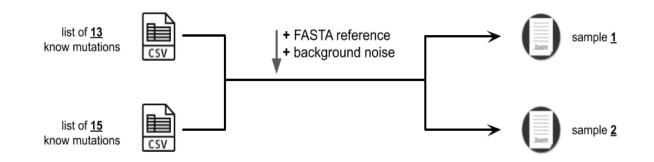
Background noise estimation



probability pileup

final pileup


Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	000000	000	0
UMI-Gen				
A I I' .				



Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	000000	000	0
UMI-Gen				
A 1 11 .	• • •			

Adding the variants

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion 0
Results & Sample \	/alidation			
Sample F	Production			

comulo	donth						inserted	mutations	s frequend	cies				
sample depth	0.90	0.80	0.70	0.60	0.5	0.4	0.3	0.2	0.1	0.05	0.01	0.005	0.001	
sample 1	1000	1	1	1	1	1	1	1	1	3	1	1	x	x
sample 2	10 000	1	1	1	1	1	1	1	1	3	1	1	1	1

Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0

Results & Sample Validation

	Α	С	G	т	Total
Control 1	0	11	10	874	895
Control 2	0	1	7	843	851
Control 3	0	2	2	860	864
Control 4	0	6	9	965	980
Control 5	1	2	4	867	874
Control 6	3	2	2	880	887

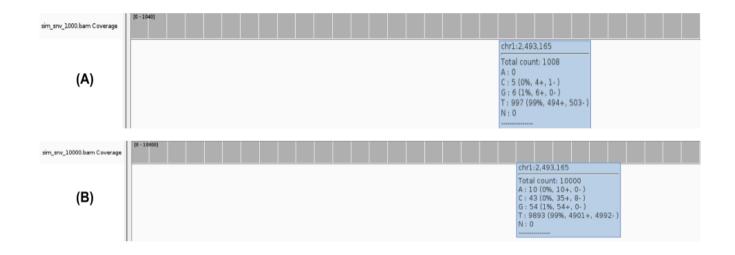
Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0
Results & Sample \	/alidation			

	Α	С	G	т
Control 1	0	0.01229	0.01117	0.97654
Control 2	0	0.00117	0.00823	0.9906
Control 3	0	0.00232	0.00231	0.99537
Control 4	0	0.00611	0.00918	0.98469
Control 5	0.00113	0.00228	0.00458	0.99199
Control 6	0.00338	0.00226	0.00225	0.99211

Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0
Results & Sample \	/alidation			

	Α	С	G	т
Control 1	0	0.01229	0.01117	0.97654
Control 2	0	0.00117	0.00823	0.9906
Control 3	0	0.00232	0.00231	0.99537
Control 4	0	0.00611	0.00918	0.98469
Control 5	0.00113	0.00228	0.00458	0.99199
Control 6	0.00338	0.00226	0.00225	0.99211
Average	0.00075	0.00441	0.00629	0.98855

Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0
Results & Sample \	/alidation			


	Α	С	G	т
Control 1	0	0.01229	0.01117	0.97654
Control 2	0	0.00117	0.00823	0.9906
Control 3	0	0.00232	0.00231	0.99537
Control 4	0	0.00611	0.00918	0.98469
Control 5	0.00113	0.00228	0.00458	0.99199
Control 6	0.00338	0.00226	0.00225	0.99211
Average	0.00075	0.00441	0.00629	0.98855
Theoretical S1	1	4	6	989

Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0
Results & Sample \	/alidation			

	Α	С	G	т
Control 1	0	0.01229	0.01117	0.97654
Control 2	0	0.00117	0.00823	0.9906
Control 3	0	0.00232	0.00231	0.99537
Control 4	0	0.00611	0.00918	0.98469
Control 5	0.00113	0.00228	0.00458	0.99199
Control 6	0.00338	0.00226	0.00225	0.99211
Average	0.00075	0.00441	0.00629	0.98855
Theoretical S1	1	4	6	989
Theoretical S2	8	44	63	9885

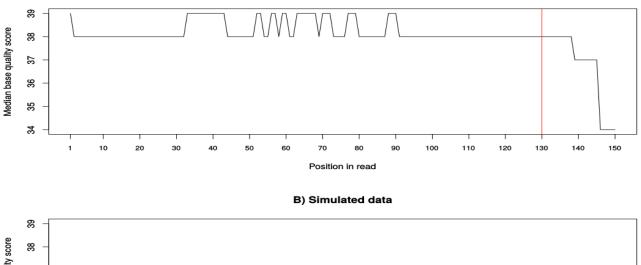
Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	00000	000	0
Results & Sample V	/alidation			

Noise in the produced samples

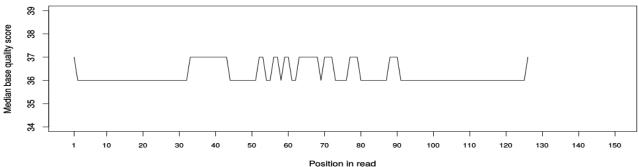
Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Results & Sample Valid	lation			
Real variar	nts in the	produced samples		

		G	
		chr1:2,491,260	
		G Total count: 1008	
		G A: 303 (30%, 150+, 153-)
		G C : 2 (0%, 2+, 0-)	-
	G	G G : 702 (70%, 351+, 351- G T : 1 (0%, 1+, 0-)	J
		G N: 0	
		G	
		G	_

2]	
	A Chr1:27,022,900 Total count: 1022 A : 200 (20%, 100+, 100-) C : 821 (80%, 410+, 411-) G : 0 T : 1 (0%, 1+, 0-) N : 0


Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Results & Sample V	alidation			
Real vari	ants in the	produced samples		

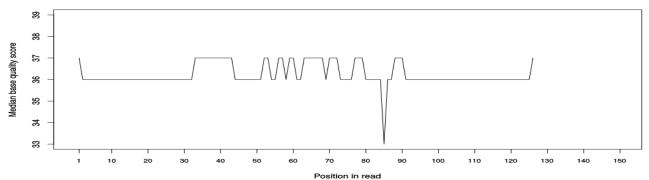
chr1:27,093,001
Total count: 972
A A : 52 (5%, 26+, 26-) A C : 1 (0%, 1+, 0-)
G: 919 (95%, 459+, 460-)
T: 0 N: 0


	chr1:120,458,001 Total count: 1064 A: 1061 (100%, 530+, 531-) C: 2 (0%, 1+, 1-) G: 1 (0%, 1+, 0-) T: 0 N: 0
c	DEL: 0 INS: 100

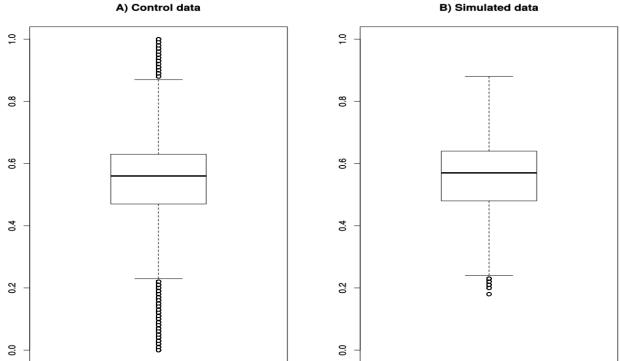
Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	000000	000	0
Results & Sample V	/alidation			

Quality score reproduction

A) Average of control data


Introduction	UMI-Gen	Results & Sample Validation	Application	Conclusion
0000000	000	000000	000	0
Results & Sample V	/alidation			

Quality score reproduction


Median base quality score ŝ Position in read

A) Average of control data + simulated drop

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion O
Results & Sample V	/alidation			
%GC cor	nparison			

B) Simulated data

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application $\bullet \circ \circ$	Conclusion O
Application				
Evaluation	on 4 varia	ant callers		

- 2 raw-read-based variant callers: SiNVICT & OutLyzer
- 2 UMI-based variant callers: UMI-VarCal & DeepSNVMiner
- Sample 1 has a depth of 1000× with 13 variants
- Sample 2 has a depth of 10,000× with 15 variants

Introduction 0000000	UMI-Gen 000	Results & Sample Validation	Application $\circ \bullet \circ$	Conclusion 0
Application				

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	233	5	61.5	99.7
OutLyzer					
DeepSNV Miner					
UMI-VarCal					

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	455	7	53.4	99.4
OutLyzer					
DeepSNV Miner					
UMI-VarCal					

Introduction 0000000	UMI-Gen 000	Results & Sample Validation	Application $\circ \bullet \circ$	Conclusion O
Application				

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	233	5	61.5	99.7
OutLyzer	11	98	2	84.6	99.9
DeepSNV Miner					
UMI-VarCal					

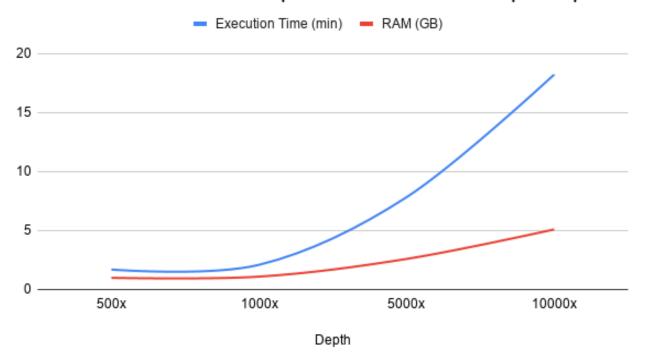
Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SINVICT	8	455	7	53.4	99.4
OutLyzer	12	330	3	80	99.6
DeepSNV Miner					
UMI-VarCal					

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application	Conclusion 0
Application				

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	233	5	61.5	99.7
OutLyzer	11	98	2	84.6	99.9
DeepSNV Miner	12	37	1	92.3	99.95
UMI-VarCal					

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SINVICT	8	455	7	53.4	99.4
OutLyzer	12	330	3	80	99.6
DeepSNV Miner	14	2	1	93.4	99.99
UMI-VarCal					

Introduction 0000000	UMI-Gen 000	Results & Sample Validation	Application $\circ \bullet \circ$	Conclusion O
Application				


Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	233	5	61.5	99.7
OutLyzer	11	98	2	84.6	99.9
DeepSNV Miner	12	37	1	92.3	99.95
UMI-VarCal	13	0	0	100	100

Variant Caller	True positives	False Positives	False Negatives	Sensitivity (%)	Specificity (%)
SiNVICT	8	455	7	53.4	99.4
OutLyzer	12	330	3	80	99.6
DeepSNV Miner	14	2	1	93.4	99.99
UMI-VarCal	15	0	0	100	100

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application $\circ \circ \bullet$	Conclusion 0
Application				
Performa	nce			

Variation of UMI-Gen's performance with sample depth

Introduction 00000000	UMI-Gen 000	Results & Sample Validation	Application 000	Conclusion ●
Conclusion				
Conclusion				

- UMI-based read simulator that is capable of producing artificial samples in which real variants are known
- Most of the parameters are customizable which allows total control over the simulation
- Generates FASTQ, BAM and SAM files
- Published in the Computational and Structural Biotecnology Journal and available for Python 3 on GitLab: https://gitlab.com/vincent-sater/umigen

Thank you for the attention