

DeepG4: A deep learning approach to predict active G-quadruplexes

SeqBim 2020

Vincent ROCHER, Matthieu Genais, Elissar Nassereddine and Raphaël Mourad

CBI-Toulouse | Chromatin and DNA Repair | 22/11/2020

DNA: The secret of life

B-DNA (1953)

The B- DNA (double helix structure) is the most stable structure.

Non B-DNA (1954)

Cruciform

Triplex

Slipped Structure

Lananand

G-Quadruplex (G4): A non B-DNA Structure

Balasubramanian et al,Sci Rep, 2017

- Fold into four-stranded structures.
- Containing guanine tetrad.
- Motif $G \geq 3N_xG \geq 3N_yG \geq 3N_zG \geq 3$

Biological function of G4's

- Regulation of gene expression and chromatin architecture.
- Telomere stability.
- Disrupting the replication fork progression causing **Double-strand breaks (DSBs)**.

Algorithms for G-quadruplexes (G4) predictions

Expert system methods

Name	Method	Implementation	Year	Link
quadparser	Regex	Python	2005	https://github.com/dariober/
gqrs_mapper	Score based	Python	2006	http://bioinformatics.ramapo.edu/QGRS
G4hunter	Score based	Python	2016	https://github.com/AnimaTardeb/G4Hunter
pqsfinder	Score based	R	2017	https://bioconductor.org/packages/release/bioc/html/pqsfinder.html
qparse	Score based	Python	2019	https://github.com/B3rse/qparse
G4CatchAll	Regex	Python	2019	https://github.com/odoluca/G4Catchall

- **Regex:** ([Gg]{3,}) (\w{1,8}) ([Gg]{3,}) (\w{1,8}) ([Gg]{3,}) (\w{1,8}) ([Gg]{3,})
- Score based: Compute a score using a sliding windows over the whole genome by using G richness and G skewness (G4Hunter).

First G4 genome-wide mapping in vitro (G4-seq) 2014

High-throughput sequencing of DNA G-quadruplex structures in the human genome

- High-resolution sequencing-based method to detect G4s in the human genome in vitro.
- The developed method called G4-seq combining features of the polymerase stop assay with Illumina next-generation sequencing.

Algorithms for G-quadruplexes (G4) predictions

Machine learning based algorithms

Name	Method	Implementation	Year	Link
quadron	Machine Learning	R xgboost	2017	https://github.com/aleksahak/Quadronr
G4detector	Deep Learning	Python / Tensorflow	2019	https://github.com/OrensteinLab/G4detector
penguinn	Deep Learning	Python / Tensorflow	2020	https://github.com/ML-Bioinfo-CEITEC/penguinn

- **Quadron:** A machine learning model to predict the formation of G4s using 119 sequence-based features. I.e: the number of tetrads in the G4s , the occurrence of special kmer ...
- Penguinn, G4detector: Multiple layers CNN (Deep learning)

Mapping G4s in vivo with BG4-seq (2018)

- ChIP-seq for the DNA secondary structures through the use of a G4-structurespecific single-chain antibody (BG4).
- Refinements in chromatin immunoprecipitation.
- Followed by high-throughput sequencing.

Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing

Active G4s dataset

Overlap between in vitro (G4-Seq) and in vivo (BG4-Seq) form active G4s.

Mapping of active G4s

G4 predictions with DeepG4

DeepG4: a deep learning model to predict active G4s (BG4-G4-seq peaks).

What is deep learning?

Some basic representation of a multi-layer deep learning model

G4 predictions with DeepG4

Deep learning for DNA sequences.

Weights can be represented as PWM and encode motifs as features for our model.

DeepG4 model architecture

- 1. **Conv1D**: Scan sequences using kernel (20bp).
- 2. Average pooling: Reduce dimension size and aggregate kernel signal.
- 3. **Global max pooling**: Output max activation signal for each kernel.
- 4. **Dropout**: Regularization layer.
- 5. Dense layer (100 units, linear): Combination of weighted kernel signal.
- 6. Dense layer (1 unit, sigmoid): Output a probability.

DeepG4: Performances

Tools

Input

Control sequences: randomly selected genomic sequences that matched sizes, GC, and repeat contents similar to actives G4s (R package gkmSVM).

- HaCat G4: train/validation/test dataset.
- Independent experiment: HaCat, HEKnp, K562.

G4 detection algorithms						
Name	Method	Implementation				
DeepG4	Deep Learning	R/Tensorflow				
penguinn_retrained	Deep Learning	Python / Tensorflow				
penguinn	Deep Learning	Python / Tensorflow				
G4detector_retrained	Deep Learning	Python / Tensorflow				
G4detector	Deep Learning	Python / Tensorflow				
quadron_retrained	Machine Learning	R xgboost				
quadron_score	Machine Learning	R xgboost				
G4hunterRF	Machine Learning	R ranger / python				
G4hunter	Score based	Python				
qparse	Score based	Python				
pqsfinder	Score based	R				
gqrs_mapper	Score based	Python				
quadparser	Regex	Python				
G4CatchAll	Regex	Python				

DeepG4: Performances

DeepG4: Performances

DeepG4: Feature extraction

- Motifs are extracted from kernels.
- 900 kernels associated into 163 clusters using matrix clustering (RSAT).
- Represented into 163 root motifs.

Multidimensional scaling (MDS) of DeepG4 clusters.

DeepG4: Feature importance

- Known TFBS motifs (identified with TomTom) are good predictors.
- De novo and G4-like motifs also found as good predictors.

Top 25 importance variables

Cell type specific transcription factor motif predictors of active G4s

Random Forest classifier:

- One cell type vs all others cells types.
- Use TFBS motifs as features.
- Importance weighted by motif abundance in the positive set.

DeepG4: SNP effect on active G4s

- C>A lead to a decrease in G4 activity.
- A>G lead to an increase in G4 activity.

SNPs could alter the G4 structure stability.

SNPs eQTL (GTEx) increasing gene expression presented high G4 activity.

Thanks

Vincent ROCHER, Matthieu Genais, Elissar Nassereddine and Raphaël Mourad CBI-Toulouse | Chromatin and DNA Repair | 22/11/2020

Possible upgrades

- Quasi-SVM as last layer (replacing Dense).
- Filled weights with JASPAR PWMs to help training.
- Parallel convolution layer with differents kernels sizes.
- Add DNA accessibility as input with ATAC-seq.

Sequence features enriched at active G4s

- Active G4s are enriched in **promoters**.
- Current algorithms failed to predict nonnegligible fraction of **active G4s (11%)**.
- And more than 50% of their results are **false positives**.

AUC

Input	DeepG4_BG4G4seq	DeepG4Scan_BG4G4seq	G4CatchAll_n
Peaks_BG4_G4seq_GSE107690_K562_201b	0.920	0.920	0.692
Peaks_BG4_G4seq_GSE76688_HEKnp_201b	0.892	0.892	0.548
Peaks_BG4_G4seq_GSE99205_HaCaT_201b	0.950	0.950	0.603
Peaks_G4seq_BG4_GSE107690_K562_201b	0.919	0.919	0.744
Peaks_G4seq_BG4_GSE76688_HaCaT_201b	0.928	0.928	0.762
Peaks_G4seq_BG4_GSE76688_HEKnp_201b	0.879	0.879	0.643
Peaks_G4seq_BG4_GSE99205_HaCaT_201b	0.919	0.919	0.675
Peaks_G4seqpm_BG4_GSE107690_K562_201b	0.934	0.934	0.770
Peaks_G4seqpm_BG4_GSE76688_HaCaT_201b	0.942	0.942	0.778
Peaks_G4seqpm_BG4_GSE76688_HEKnp_201b	0.893	0.893	0.627
Peaks_G4seqpm_BG4_GSE99205_HaCaT_201b	0.937	0.937	0.706