srnaMapper: an optimal mapping tool for sRNA-Seq reads

Matthias Zytnicki, Christine Gaspin

INRAE, MIAT

SeqBIM 2020

RNA-Seq

Downstream analysis

Griffiths et al., PLOS Comp. Biol., 2015

Our question

Particularities of sRNA-Seq

- A population of different classes of small RNAs: miRNAs, tRFs, siRNAs, piRNAs, etc.
- They are short (about 22–24bp, after trimming).
- Sequences are highly duplicated (\sim 5% the exact same read).
- Most mismatches happen at the ends of the reads.

ID	0	Accession *	RPM 0	Chromosome 0	Start 0	End 0	Strand 0
ath-MIR15	<u>6a</u>	MI0000178		chr2	10676451	10676573	
ath-MIR15	<u>6b</u>	MI0000179		chr4	15074899	15075081	+
ath-MIR15	<u>6c</u>	MI0000180		chr4	15415418	15415521	
ath-MIR15	<u>6d</u>	MI0000181		chr5	3456632	3456749	
ath-MIR15	<u>6e</u>	MI0000182		chr5	3867207	3867313	+
ath-MIR15	61	MI0000183		chr5	9136106	9136237	+
ath-MIR15	<u>7a</u>	MI0000184		chr1	24913202	24913299	
ath-MIR15	<u>7b</u>	MI0000185		chr1	24921086	24921217	+
ath-MIR15	7c	MI0000186		chr3	6244500	6244716	
ath-MIR15	7d	M0000187		chr1	18026811	18027031	

from miRBase

Our question — Cont.

Observation

- Most mapping tool developments are dedicated to long reads.
- There is no dedicated tool for sRNAs.

Usual (biological) query

For each read, get me *all* the regions with *minimum* number of mismatches n, with $n \le k$.

Data

Reads

- Stored in a tree.
- Counts, and best quality is kept.

@read4		
CGA		
+		
HHI		
@read5		
CGC		
+		
IIH		
@read6		
CT		
+		
II		

Data

Genome

- Stored in a suffix array.
- Using BWA implementation.

Example

BANANA

Suffix tree

Main idea

Aim

- For each accepting "read node," compute the all the "genome nodes" with minimum distance not greater than *k*.
- For each "reads node," compute recursively the all the "genome nodes" with distance not greater than *k*.

Note: The genome tree here is not an actual suffix tree. It is just presented as an illustration.

Implementation

Optimization 1

Expect a 0-error mapping first

- Map with no error first.
- In case of error at depth d, add an error up to depth d.

Optimization 2

The genome tree is a vector of 4^8 trees

- The first tree is labelled AAAAAAAA.
- The second tree is labelled AAAAAAAC.
- etc.
- Each tree starts at depth 8.

Other optimizations

Remove low complexity reads ACACACACACA

Can process several reads files

Can use several threads

- Mapping: The mapping threads traverse distinct parts of the reads trees.
- Reads tree construction: 1 tree for each thread, which are merged afterwards.

Results — Time

Results — comparison of # sequences

Results — comparison of # better hits

Results — comparison of # hits

Problem

states increase

Bottom line

- You do not want *all* the mappings.
- How to implement a good # states vs states elimination balance?

Implementation details — Reads

First pass

- Edges contain the nucleotides (and the size), and the address to the following node.
- No predefined order.
- Each node contains 4 edges, the read counts, and the qualities.

Second pass

- Nodes are sorted in a depth-first fashion.
- Read counts and qualities are stored in a parallel vector.

That's all, folks!

Available at https://github.com/mzytnicki/srnaMapper

Thank you for your attention!

Results — time vs # files

Results — # mismatches

