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Abstract
Mass spectrometry remains the privileged method to characterize proteins. Nevertheless, most of
the spectra generated by an experiment remain unidentified after their analysis, mostly because of
the modifications they carry. Open Modification Search (OMS) methods offer a promising answer
to this problem. However, assessing the quality of OMS identifications remains a difficult task.
Aiming at better understanding the relationship between (i) similarity of pairs of spectra provided
by OMS methods and (ii) relevance of their corresponding peptide sequences, we used a dataset
composed of theoretical spectra only, on which we applied two OMS strategies. We also introduced
two appropriately defined measures for evaluating the above mentioned spectra/sequence relevance
in this context: one is a color classification representing the level of difficulty to retrieve the pep-
tide sequence that generated the identified spectrum ; the other, called LIPR, is the proportion
of common masses, in a given Peptide Spectrum Match (PSM), that correspond to dissimilar se-
quences. These two measures were also considered in conjunction with the classical False Discovery
Rate (FDR). The three above mentioned measures allowed us to clearly determine which of the
two studied OMS strategies outperformed the other, both in terms of number and of accuracy of
identifications. Even though quality evaluation of PSMs in OMS methods remains challenging, the
study of theoretical spectra is a favorable framework for going further in this direction.

1. Introduction
Mass spectrometry in tandem MS mode (MS/MS) is the most powerful method to
identify proteins and characterize their modifications on a large scale. However, most
of the spectra are left unidentified after their analysis by a dedicated software. This
is likely due to the large proportion of spectra generated from proteins carrying mod-
ifications [1]. Software usually infer the identification of an experimental spectrum
from its similarity to reference spectra. When a peptide carries a modification, its
mass is by nature modified, which prevents its identification by conventional methods
that compare each experimental spectrum with only a restricted set of reference
spectra, approximately sharing the same mass in order to avoid excessive runtime.
On the other hand, Open Modification Search (OMS) methods compare each experi-
mental spectrum to all the reference spectra representing a proteome. Thus, this
comparison produces a list of Peptides to Spectrum Matches (PSMs) per experimental
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spectrum, and a mass difference ∆m 6= 0 between the experimental spectrum and its
associated peptide is assumed to be due to one or several modifications that differen-
tiate them. Many scores exist to evaluate the similarity between two spectra, which
all take into account, at a certain level, the number of peaks (i.e., of masses) that are
shared by the two spectra, a number called shared peaks count (SPC). Despite the
scientific relevance of better spectra identifications, OMS methods are still underused,
notably because their reliability remains debated. It is therefore important to better
describe the advantages and limitations of these methods. We focused our study
on a thorough understanding of two widely spread strategies to determine the best
PSM for each experimental spectrum. In the first strategy Strategy1, the best PSM
is chosen according to a score that does not take ∆m into account. The second
strategy Strategy2 tries to improve the alignment – and thus the score – of all the
PSMs according to ∆m before the choice of the best PSM (see Figure 1). In order
to determine the most efficient strategy, a prerequisite was to be able to implement
both strategies using the same software, which implies the availability of very efficient
spectra comparison and alignment algorithms. The SpecOMS software [2], which we
have previously developed, fulfills these conditions.

Figure 1. MS/MS spectra matches and their peptide sequences. b-ions (containing
masses information from the prefix of the peptide) are displayed in blue, y-ions (containing masses
information from the suffix of the peptide) in red, and matches between spectra in dashed lines.
Intensities of all peaks are set to an arbitrary unit value. The middle EAEDISEK MS/MS spectrum
shares 7 masses (black dashed lines) with the above native EAEISEK spectrum. After a shift of
∆m at position 3 in EAEISEK (below), 8 new masses match with EAEDISEK (shown in green),
and one match is removed (grey dashed line). The SPC is then improved from 7 (raw SPC ) to 14
(shift SPC ).

To compare in-depth the limits of each strategy, we decided to ground this
study using the theoretical spectra derived from the human proteome, considering
successively each theoretical spectrum in the role of an experimental spectrum. Doing
so, we eliminate the inherent identification difficulties due to the imperfection of
experimental spectra (e.g. noise, missing peaks) and concentrate on the benefits of
each strategy. Hence, PSMs with ∆m 6= 0 can only be explained by differences in
terms of sequence, namely insertions, deletions and/or substitutions of one or several
amino acids. Every PSM matching a peptide to itself was considered irrelevant and
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consequently forbidden. Many OMS methods estimate the FDR of their results
with a target/decoy approach [3]. We also used this approach to compare both
strategies, even though it is still unclear whether or not this method underestimates
the incorrect identifications [4, 5]. That is why we propose two additional measures
of the PSM characteristics to evaluate their quality and compare the strategies.

2. Methods
Peptide identification using SpecOMS We implemented two strategies to find the
best PSMs in SpecOMS. Next, we applied these two strategies to compare the set
of theoretical spectra generated from the human proteome against themselves. A
peptide that plays the role of an experimental spectrum in PSM is called the bait,
whereas a peptide associated to a bait in a PSM is called a hit. Parameters were
set in such a way that SpecOMS extracted from its data structure SpecTrees [6]
all pairs of spectra of the form (bait,hit) whose SPC is greater than or equal to
7. Depending on the run, the parameter “shift” of SpecOMS was set to false
(Strategy1 ) or true (Strategy2 ) (see Figure 2). More precisely, in Strategy1, for each
bait, SpecOMS selects the best PSM based on the highest SPC, a score that we call
raw SPC. In Strategy2, the best PSM for a given bait b is selected after the following
two-step procedure is applied: first, for every candidate hit h for b such that ∆m 6= 0,
SpecOMS realigns h to b by shifting its masses (by ∆m) at each possible relevant
location in the spectrum, and retains the shift location in h that yields the best
newly computed SPC. Second, SpecOMS chooses the best PSM among the candidate
PSMs for b, based on the newly computed SPC, that we call shift SPC.

Figure 2. Determining the best PSM in each strategy. Suppose, fictitiously, that a given
bait is to be compared to 4 peptides (called hits). Hit 1 is discarded as its raw SPC with bait is
below the imposed threshold of 7. Hits 2, 3 and 4 are candidate PSMs for bait. Since ∆m 6= 0 for
Hits 2, 3 and 4, a shift may be applied, and in that case shift SPC is obtained (with shift SPC ≥
raw SPC by definition). In Strategy1, the best PSM for bait is Hit 2, as it is based on raw SPC. In
Strategy2, the best PSM for bait is Hit 3, as it is based on shift SPC.

Data and theoretical spectra generation The human proteome was downloaded from
Ensembl 99, release GrCh38. Proteins predicted with the annotation “protein coding”
were added to 116 contaminant proteins downloaded from the cRAP contaminant
database. The resulting set of proteins is referred to as the target database, in silico
digested by trypsin. Each peptide is fragmented in silico by SpecOMS, so as to
transform it into a theoretical spectrum. For this, ions from the b and y series are
generated. For a given peptide, the set of generated masses represents its theoretical
spectrum.
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Measuring the quality of PSMs
False Discovery Rate (FDR). The first classical measure that we used is the number
of PSMs we can validate at a given False Discovery Rate (FDR). We calculated
the FDR as the proportion of best PSMs of the form (bait,hit) for which the hit
is a decoy, over the total number of best PSMs. In this work, we were essentially
interested by PSMs for which the FDR is less than 1%.

Color classification. Another parameter which we consider as informative for validat-
ing MS/MS results, notably in this context, is our ability to explain a PSM of the
form (bait,hit) obtained by a given strategy ; by “explain”, we mean unambiguously
determine the transformation (in terms of amino acid sequence) that is required to
retrieve the bait starting from the hit. Thus, the question we ask ourselves is the
following: given a PSM (bait,hit) together with ∆m, shift SPC and its corresponding
best shift location, how difficult is it to precisely explain bait from hit ? For this,
we introduce here a classification of PSMs into three colors (Green, Orange or Red),
depending on this level of difficulty, from the easiest (Green) to the hardest (Red).
In a nutshell, Green means that we are able to explain the link between hit and bait
unambiguously, Orange contains some level of ambiguity, and Red means that further
information and/or computational efforts are necessary to explain the relationship
between bait and hit. See Figure 3 for examples of the color classification.

Figure 3. Illustration of the Green/Orange/Red classification of PSMs. The first two
rows present PSMs with a bait unambiguously deductible from the information given by the PSM,
thus classified as Green. In the first example, ∆m corresponds to the mass of S, which can thus be
added in the hit at the given location to retrieve the bait. In the second example, the absolute value
of ∆m corresponds to the mass of EPPNPE, which can be deleted from the hit to retrieve the bait.
In the third row, ∆m can correspond to two possible amino acid sequences (VH or HV). Such PSM
is thus classified as Orange. In the last three rows, transforming hit into bait is too ambiguous,
although sequences may be close (e.g., first red row). In all cases, such PSMs are classified as Red.

Low Information Peaks Rate (LIPR). In an MS/MS experiment, spectra are con-
sidered similar to each other if they share a high number of masses. Ions from the
same series (i.e., y-ions or b-ions in our case), which represent the same fragment,
necessarily possess the same mass. Consequently, common masses represent relevant
information concerning sequence similarity. However, the converse is not always
true : identical masses may not represent identical sequences, for example when
amino acids are permuted (e.g., AEAE and EEAA have the same mass) or in more
complex situations when combinations of different amino acids turn out to have

4



Evaluation of open search methods based on theoretical mass spectra comparison

the same total mass (e.g., KE and GVT have the same mass). Following the above
discussion, we introduce here a new measure, that we call Low Information Peaks
Rate (or LIPR). For a given PSM (bait,hit), LIPR(bait,hit) is the percentage of
common masses between bait and hit that do not correspond to identical sequences.
A LIPR close to 0 implies that the two amino acid sequences of bait and hit are
very similar. In that case, one can argue that the PSM at hand is relevant, and that
retrieving bait from hit may be feasible. On the other hand, when LIPR is close to
100, both sequences, although sharing a non negligible number of masses, represent
very dissimilar sequences, and the PSM can thus be considered as debatable.

3. Results and Discussion
We successively implemented Strategy1 and Strategy2 to compare all the theoretical
spectra generated from the human proteome (572 063 spectra) against a database
merging the target and decoy human proteins (1 148 608 spectra). About 80% of
the 572 063 tryptic peptides from the human proteome share at least 7 peaks with
any other peptide, and about 23% of them share at least 10 peaks (target or decoy).
Respectively to an FDR less than 1%, Strategy1 validates 17 160 PSMs with a
minimal raw SPC of 17 (i.e. considering best PSMs for which raw SPC ≥ 17),
while Strategy2 validates 57 784 PSMs with a minimal shift SPC of 21. Strategy2
recruits more than three times more PSMs than Strategy1, thus we can conclude
that Strategy2 behaves better than Strategy1 according to the number of validated
PSMs. But one may wonder to what extent the information given by these PSMs is
enough to restore the correct amino acid sequence of the baits.
We could get the distributions of the sets PSM1 and PSM2 obtained respectively by
Strategy1 and Strategy2 among the 3 color classes, as well as the evaluation of the
LIPR feature. Both strategies behave in a similar fashion, but at less than 1% FDR,
Strategy2 validates roughly three times more Green PSMs than Strategy1 (27 211 vs
9 153). Thus, at first glance, the number of additional identifications obtained by
Strategy2 (compared to Strategy1 ) does not come at the cost of a deterioration of
the quality of the results. In terms of LIPR, it can be noted that its average value is
higher for PSM1 (38.5% for PSM1 vs 22.97% for PSM2).
The performances obtained by Strategy2 also lead us to conclude that, among the
two, Strategy2 is the one that should be implemented in OMS software. We saw
that although Strategy2 recruits more Green and Orange PSMs than Strategy1, it
contains proportionally more Red PSMs. However, the average LIPR from the
Red class obtained by Strategy2 is much lower than for Strategy1. This leads us to
think that a proportion of the Red PSMs from Strategy2, that share enough peaks
corresponding to common subsequences, could be considered as “almost valid” PSMs.
More precisely, we believe that with additional methodological and computational
effort, some of these Red PSMs could be transfered to the Orange or Green category,
an effort that methods implementing Strategy2 should pursue.
By comparing two OMS strategies with theoretical peptides and new indicators, we
also developed an environment which allowed us to see and understand elements that
are more difficult to comprehend in an experimental context. This protocol could be
used to understand principles that are at the heart of other (OMS) MS identification
tools in order to configure and calibrate them.
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