
Extended abstract
On the realizations of sequence graphs
Sammy Khalife1*, Yann Ponty1, Laurent Bulteau2

1LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
2LIGM, CNRS, Université Gustave Eiffel, 77454 Marne-la-Vallée, France
*Corresponding author: khalife@lix.polytechnique.fr

Abstract
Several language models rely on an assumption modeling each local context as a (potentially ori-
ented) bag of words, and have proven to be very efficient baselines. Sequence graphs are the natural
structures encoding their information. However, a sequence graph may have several realizations as
a sequence, leading to a degree of ambiguity. Several combinatorial problems are presented, de-
pending on three levels of generalisation (window size, graph orientation, and weights). We present
some complexity results and a dynamic programming algorithm to measure this level of ambiguity.

Keywords
Sequence Algorithms — Graphs — Natural Language Models — Inverse problem

1. Introduction
The automated treatment of familiar objects, either natural or artifacts, always
relies on a translation into entities manageable by computer programs. However,
the correspondence between the object to be treated and ”its” representation is
not necessarily one-to-one. The representations used for learning algorithms are no
exception to this rule. In particular, natural language words and textual documents
representations are essential for several tasks, including document classification [1],
role labelling [2], and named entity recognition [3]. The traditional models based
on pointwise mutual information, or graph-of-words (GOW), [4, 5, 6], supplement
the content of bag-of-words (TF, TFIDF) with statistics of co-occurrences within
a window of fixed size w, introduced to mitigate the degree of ambiguity. Several
models [7, 8, 9, 10] also use the same type of information and constitute strong
baselines for natural language processing. While these representations are more
precise than the traditional bag-of-words (e.g Parikh vectors), they still induce some
level of ambiguity, i.e. a given graph can represent several sequences. Our study is
thus motivated by a quantification of the level of ambiguity, seen as an algorithmic
problem, coupled with an empirical assessment of the consequences of ambiguity for
the representations.

2. Definitions and problem statement
Let x = x1, x2, ..., xp be a finite sequence of discrete elements among a finite vocab-
ulary X. Without loss of generality, we can suppose that X = {1, ..., n}. In the
following, let Ip = {1, ..., p}. This motivates the following definition:

1

Realizations of sequence graphs

Linux is not UNIX but

(a) No ambiguity (w = 3)

Linux is not UNIX but

(b) Ambiguity (w = 2)
Figure 1. Sequence graphs (or graphs-of-words) built for the sentence “Linux is not
UNIX but Linux” using window sizes 3 (a) and 2 respectively (b). In the second
case, the sequence graph is ambiguous, since any circular permutation of the words
admits the same representation.

Definition 1 G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if
and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , |k − k′| ≤ w − 1 xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced with

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j. (2)

Finally, a weighted sequence graph G is endowed with a matrix Π(G) = (πij) such
that

πij = Card {(k, k′) ∈ I2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j} (3)

We say that x is a w-admissible sequence for G (or a realization of G), if G is the
graph of sequence x with window size w.

The natural integers πij represent the number of co-occurrences of i and j in a
window of size w. Hence, the graph of sequence is unique. An linear time algorithm
to construct a weighted sequence digraph is obtained by sliding a window of size
w over the sequence and incrementing the counter of presence of two elements in
the window. This construction defines a correspondence between the sequence set
X? into the graph set G : φw : X? → G, x 7→ Gw(x). Based on these definitions, we
consider the following problems:

Problem 1 (Weighted-Realizable (W-Realizable))
Input: Possibly directed graph G, matrix weights Π, window size w
Output: True if (G,Π) is the w-sequence graph of some sequence x, False otherwise.

Problem 2 (Unweighted-Realizable (U-Realizable))
Input: Possibly directed graph G, window size w
Output: True if G is the w-sequence graph of some sequence x, False otherwise.

We denote D-Realizable (resp. G-) the restricted version of Realizable where
the input graph G is directed (resp. undirected), and W-Realizable (resp. U-
) the restricted version of Realizable where the input graph G is weighted
(resp. unweighted), possibly in combination with the D- or G- variants. We write
Realizablew for the case where w is a fixed (given) constant. We also consider the
variants of W-Realizable, denoted WG-Realizable and WD-Realizable where

2

Realizations of sequence graphs

the input graph is restricted to be respectively undirected and directed. We define
UG-Realizable and UD-Realizable similarly. Finally, we write (WG-, WD-,
...)Realizablew for the case where w is a fixed strictly positive integer.

Problem 3 (Unweighted-NumRealizations (U-NumRealizations))
Input: Possibly directed graph G, window size w
Output: The number of realizations of G, i.e. preimages of G through φw such
that |{x ∈ X? | φw(x) = G}| if finite, or +∞ otherwise.

Problem 4 (Weighted-NumRealizations (W-NumRealizations))
Input: Possibly directed graph G, matrix weights Π, window size w
Output: The number of realizations of G in the weighted sense.

Similarly, we use the same prefix for the directed or undirected versions of (D-,
G-, i.e. DU- for directed and unweighted):

DW Directed weighted DU Directed unweighted
GW Undirected weighted GU Undirected unweighted

We also denote NumRealizationsw for the case where w is a fixed strictly positive
integer. Note that NumRealizations strictly generalizes the previous one, as
Realizable can be solved by testing the nullity of the number of suitable realization
computed by NumRealizations.

3. Main theoretical results
3.1 Complete characterization of 2-sequence graphs

Table 1. Complexity for various instances of our problems (w = 2)
NumRealizations2 Realizable2

Variation Complexity #Sequences Complexity Characterization

GU P {0,+∞} P G connected
GW #P-hard {0, 1} ∪ 2N∗ P ψ(G) (semi) Eulerian
DU P {0, 1,+∞} P Theorem 1
DW P N P ψ(G) (semi) Eulerian

Definition 2 Let G be a digraph, and R+(G) be the weighted DAG obtained from
R(G), such that the weight of an edge is attributed the number of distinct arcs from
two strongly connected components in G.

Theorem 1 Let G = (V,E) be an unweighted digraph. G is a 2-sequence graph if
and only if R+(G) is a directed path and its weights are all equal to 1.

3

Realizations of sequence graphs

3.2 General case: main complexity results

Table 2. Complexity for various instances of our problems (w ≥ 3)
NumRealizationsw Realizablew NumRealizations Realizable

Variation Complexity Complexity Complexity Complexity

GU P P W[1]-hard W[1]-hard
GW #P-hard ∀w ≥ 3 NP-hard ∀w ≥ 3 #P-hard NP-hard
DU Open Open W[1]-hard W[1]-hard
DW #P-hard NP-hard #P-hard NP-hard

4. Dynamic programming formulation for NumRealizationsw

The recursion proceeds by extending a partial sequence, initially set to be empty,
keeping track of for represented edges along the way. Namely, consider Nw[Π, p,u]
to be the number of w-admissible sequences of length p for the graph G = (V,E),
respecting a weight matrix Π = (πij)i,j∈V 2 , preceded by a sequence of nodes u :=
(u1, . . . , u|u|) ∈ V ?. It can be shown that, for all ∀p ≥ 1, Π ∈ N|V 2| and u ∈ V ≤w,
Nw[Π, p,u] obeys the following formula:

Nw [Π, p,u] =
∑
v∈V

Nw

[
Π′(u,v), p− 1, (u1, ..., u|u|, v)

]
if |u| < w − 1

Nw

[
Π′(u,v), p− 1, (u2, ..., uw−1, v)

]
if |u| = w − 1

(4)

with Π′(u,v) := (πij − |{k ∈ [1, |u|] | (uk, v) = (i, j)}|)(i,j)∈V 2 . The base case of this
recurrence corresponds to p = 0, and is defined as

∀ Π, Nw[Π, 0,u] =
{

1 if Π = (0)(i,j)∈V 2

0 otherwise.
(5)

The total number of admissible sequences is then found in Nw[Π, p, ε], i.e. setting u
to the empty prefix ε, allowing the sequence to start from any node.

The recurrence can be computed in O(|V |w ×
∏

i,j∈V 2(πi,j + 1)) time using
memoization, for p the sequence length. The complexity can be refined by noting
that: ∑

i,j∈V 2

πi,j ≤ w × p

It follows that, in the worst-case scenario,
∏

i,j∈V 2(πi,j + 1) ∈ O(2w p). Thus, it is
still possible to compute Nw[Π, p, u1:w] for “reasonable” values of p and w such as
p ≤ 500 and w ≤ 10.

Acknowledgments
We thank Guillaume Fertin for his suggestions and questions which helped to orientate
this work in the right direction.

4

Realizations of sequence graphs

References
[1] Konstantinos Skianis, Fragkiskos Malliaros, and Michalis Vazirgiannis. Fusing

document, collection and label graph-based representations with word embed-
dings for text classification. In Proceedings of the Twelfth Workshop on Graph-
Based Methods for Natural Language Processing (TextGraphs-12), pages 49–58,
2018.

[2] Michael Roth and Kristian Woodsend. Composition of word representations
improves semantic role labelling. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 407–413,
2014.

[3] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[4] Jaume Gibert, Ernest Valveny, and Horst Bunke. Dimensionality reduction
for graph of words embedding. In International Workshop on Graph-Based
Representations in Pattern Recognition, pages 22–31. Springer, 2011.

[5] François Rousseau, Emmanouil Kiagias, and Michalis Vazirgiannis. Text catego-
rization as a graph classification problem. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1702–1712, 2015.

[6] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang,
Yangqiu Song, and Qiang Yang. Large-scale hierarchical text classification with
recursively regularized deep graph-cnn. In Proceedings of the 2018 World Wide
Web Conference, pages 1063–1072, 2018.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[8] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[9] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A
latent variable model approach to pmi-based word embeddings. Transactions of
the Association for Computational Linguistics, 4:385–399, 2016.

[10] Arora Sanjeev, Liang Yingyu, and Ma Tengyu. A simple but tough-to-beat
baseline for sentence embeddings. Proceedings of ICLR, 2017.

5

	Introduction
	Definitions and problem statement
	Main theoretical results
	Complete characterization of 2-sequence graphs
	General case: main complexity results

	Dynamic programming formulation for NumRealizationsw
	References

