
Extended abstract
Correcting Long-Reads with k-mers: A
Dream Comes True
Pierre Marijon1 , Philipp Spohr2 Antoine Limasset3 ,
1Heinrich Heine University Düsseldorf Medical Faculty Institute for Medical Biometry and
Bioinformatics
2Heinrich Heine University Düsseldorf, Algorithmic Bioinformatics
3Univ. Lille, CNRS, UMR 9189 - CRIStAL, F-59000 Lille
*Corresponding author: pierre.marijon@hhu.de

Abstract
Long-read sequencing technologies have become widespread for a broad application range. Never-
theless, they still have a high error rate. The correction of such reads is usually time and memory
expensive due to the pairwise alignment step. However, previous techniques based on k-mer spec-
trum analysis performed very well on short-reads and even on long-reads given the availability of
short-read sequences. Those techniques were able to be extremely fast and lightweight, relying on
a very efficient data structure.
In this presentation, we present two ongoing works showing that such techniques can be adapted
to work on noisy long reads directly without relying on precise short read data: PanCov-Correct
corrects Nanopore reads while keeping low-covered variants, in heterozygous context. Pcon & Br
performs long-read self-correction. These two correction methods reach an error-rate of around
0.1%, faster than other self-correction methods.

Keywords
long-read — correction — variant calling

1. Introduction
Third-generation DNA sequencing is increasingly becoming a standard technology
for reference genome construction (de novo assembly), detection of structural vari-
ants, long-range variant phasing, and sequencing of GC-rich regions with accurate
coverage. However, their higher error rate, which can exceed 10%, and complex
error profiles presenting substitutions, deletions, and insertions lead to algorithmic
challenges.

Most correction tools use pairwise alignment beforehand to perform the long-read
correction. This step is usually the bottleneck in terms of time and memory of most
pipelines. We will present preliminary results of two new correction methods based
on k-mers from long-reads during this talk. PanCov-Correct that corrects reads
from COVID-19 while preserving low-covered variants. Pcon and Br that adapt the
well known k-mer spectrum correction to the long-reads error distribution.

2. Materials & Methods

1

https://orcid.org/0000-0002-6694-6873
https://orcid.org/0000-0002-6039-377X
https://orcid.org/0000-0002-0669-4141

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 1. We apply this decision flow to select reads k-mers in the PanCov-Correct
method i) We only consider k-mers that verify
min

(
forwardCount

totalCount , reverseCount
totalCount

)
> 0.3 ii) A k-mer is ignored if its total count is

lower than 10 (min threshold) and accepted if upper than 50 (max threshold) iii)
For a medium total coverage: we estimate the local coverage of the considered
k-mer and accept the k-mer if kmerCoverage× 0.7 > estimateLocalCoverage. All
threshold are chosen empirically.

2.1 PanCov-Correct
This correction method is part of a larger pipeline PanCov (publication in prepara-
tion), whose goal is to call variants in COVID-19 samples sequenced with Nanopore
technology.

The current state-of-the-art method to call variants of COVID-19 based on
Nanopore sequencing, proposed by the ARTIC network 1, can be roughly summa-
rized as (i) reverse transcription from RNA to DNA, (ii) viral genome amplification
or enrichment, (iii) generation of the sequencing data (iv) run Nanopolish [1] and
Medaka2 on this data to produce a consensus sequence and variant calling. This
pipeline detects the most abundant viral alleles present in each patient, but exhibits
reduced sensitivity for alleles present at lower frequencies and often fails to detect
mixed strands in samples.

The sequencing pipeline produces Nanopore reads with a 300 base pairs length,
9% error rate 300x of coverage (with some region’s coverage as low as 20x), and some
strand bias. Our goal is to provide a correction tool that removes the majority of
sequencing errors as well as the strand bias while keeping variants with a low allele
frequency.

The correction performed by PanCov-Correct is based on GraphAligner’s[2]
hybrid correction method. GraphAligner runs bcalm [3] on short-reads to build a
DeBruijn graph, maps long-reads on this graph, and uses graph information as a
ground truth to correct long-reads; this method helps preserving variants if they are

1https://artic.network/
2https://github.com/nanoporetech/medaka

2

https://artic.network/
https://github.com/nanoporetech/medaka

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 2. We can see erroneous k-mers generally have a low abundance, the
majority of reference k-mers have an abundance of around 40 for this dataset. By
replacing low abundance k-mers with high abundant ones we correct the errors.

present in the DeBruijn graph.
To replace k-mers from short-reads, we use the reference k-mers, and additional k-

mers from Nanopore reads. After a count of k-mers in both strand (with jellyfish
[4]) we select a subset with the decision tree presented in Figure 1.

The first filter removes erroneous k-mers due to strand bias, and the two other
filters erroneous k-mers while keeping k-mers in low coverage regions.

With all accepted k-mers, as well as the k-mers from the reference, we build a
DeBruijn graph with bcalm and use GraphAligner to correct reads. We execute
this pipeline iteratively with an increasing value for the k-mer size.

2.2 Pcon & Br
Pcon & Br correction method is based on the k-mer spectrum and the idea that
erroneous k-mers are observed less frequently than correct k-mers in the dataset.
Figure 2 shows a k-mer spectrum with reference and erroneous k-mers in 50x E. coli
Nanopore R10.3 with an error rate of around 5%. We can see that most erroneous
k-mers have low coverage.

With Pcon and Br, we try to apply this method to long-reads. Pcon is a k-mer
counter designed to count short k-mers quickly. Br scans reads and tries to replace
low count k-mers, designated as weak, by k-mers with high coverage, design now as
solid, as Musket[5] and Lighter[6].

2.2.1 Pcon
Pcon is based on a simple reversible hash function that maps all possible canonical
k-mer to the range between 0 to 2(2×k)−1. By allocating a table of size 2(2×k)−1 Pcon
can store the counts of all possible canonical k-mers.

Each k-mer exists in two versions, forward and reverse, that are considered indis-
tinguishable. Therefore, to reduce memory usage, we store only one version of each
k-mer. The chosen form is dubbed canonical. Most of the time, the smallest integer

3

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 3. We present the mean error rate of each sample as a violin plot, for the raw
reads and after each correction round. The first round with k=11 divides the error
rate by more than 10 and further iterations allow the reads to reach an average
error of 0.24%. The correction method also reduces the variance of mean error.

value is chosen as the canonical. The Pcon hash function is designed to avoid the
computation of two versions to get the canonical one.

First, we define a function popcount, which returns the number of bits equal
to 1 in a k-mer binary representation. The hash function converts the nucleotides
of a k-mer in a two bits representation following this encoding: A ← 00, C ← 01,
G ← 11 and T ← 10. This encoding’s main property is that, given that the k-mer
length is odd, popcount(forward) is odd iff popcount(reverse) is even. Thus, we
define the canonical version of a k-mer as the one with even popcount. This property
helps to determine the canonical k-mer without computing its reverse complement.
Moreover, if we work only with canonical k-mers, we can remove one bit for each
k-mer and reconstruct this bit by adding a one or a zero to get an even popcount.

Pcon can convert its count in a bitfield. If a k-mer count is larger than a threshold,
the bit corresponding to the k-mer value is set to 1 else to 0.

Pcon can write its result in different formats: pcon (a gzip-compressed dump of
the count table), CSV, solid (a gzip-compressed dump of bitfield), and it can also
produce a k-mer spectrum. Pcon is usable as a standalone tool and as a Rust library
with C and Python bindings.

2.2.2 Br
Br screens the read sequence uses Pcon’s solid bitfield to know if each k-mer is
solid or not. When Br detects a weak k-mer, it can apply four different algorithms
to correct the faulty nucleotides. Here we describe those four algorithms dubbed:
One, GapLength, Graph, and Greedy.

One This algorithm is the simplest one. It supposes that a single isolated error
produced the weak k-mer. This type of error generates a succession of k weak k-
mers. This algorithm tries to replace the last base of the first weak k-mer to convert
it in solid k-mer. This base is considered the correct one. If the N following k-mers
are solid with this correction, Br validates this correction. If two or more corrections
are possible, Br does not try to correct this error.

Graph This algorithm assumes an error generates a succession of weak k-mers bor-
dered by two solid k-mers. Graph algorithm considers the set of solid k-mers as

4

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 4. We present the discovered variants with Nanopore reads compared
between different methods, freebayes corresponds to freebayes on the corrected
read, nanopolish and medaka correspond to variants called by the ARTIC network
pipeline. We observe that the amount of variant discovered exclusively by freebayes
(first bar) is comparable to the amount of variant discovered by all tools (last bar)

a DeBruijn graph and searches a simple path between the two border solid k-mers.
Graph starts from the last solid k-mer before the error and progresses in the De-
Bruijn graph, if we reach the first solid k-mer after error, we replace the erroneous
section of the read by the simple path. If we reach a fork, a dead-end, or a cycle
during DeBruijn graph exploration, Br does not apply any correction.

GapLength Inspired by MindTheGap [7], the length of weak k-mers allows the deter-
mination of the error type:

• If length < k, it is a deletion

• If length == k, it is an error generated by a single nucleotide change

• If length > k, it is a substitution or insertion with length equal to the number
of weak k-mers minus size of k-mer

In practice, we apply the Graph algorithm for deletion and the One algorithm
for isolated errors. For the last case, we can determine the number of k-mers required
to replace the last erroneous base. We apply a very similar algorithm as Graph,
but we can stop the graph exploration earlier.

Greedy Contrary to Graph and GapLength, Greedy does not try to analyze the
errors to correct them but directly tries to replace the erroneous sequence by a path
in the DeBruijn. This algorithm explores the DeBruijn graph and tries to find when
the graph path matches the read sequence.

3. Result
3.1 PanCov-correct
To evaluate the PanCov-Correct method, we run it iteratively with a k-mer size
ranging from 11 to 19 and a step size of 2. We evaluate the error rate by mapping

5

Correcting Long-Reads with k-mers: A Dream Comes True

Dataset Organisme Technology Error rate Coverage
bacteria E. coli Nanopore R10.0 14.7% ≈ 127x
bacteria5 E. coli Nanopore R10.3 5.9% ≈ 54x
bacteria7 E. coli Nanopore R10.3 7.7% ≈ 127x
celegans C. elegans Badreads 5 % 16x, 20x, 50x to 400x per 50x step
metagenome metagenome3 Nanopore R10.3 10.8%
synthetic E. coli Badreads 1% to 10% per 1% step ≈ 50x
yeast C. elegans Nanopore R10.3 5 % ≈ 283x

Table 1. Main characteristic of the data sets used to evaluate Pcon & Br against
other tools.

reads against the reference with minimap2 and compute the mean error rate with
samtools stats. The result is presented in Figure 3. By correcting reads with k
equals 11, we reduce the error rate by ten. Another iteration improves read quality,
just above 0.2% of error. We start with a k-mer size equal to 11 because most
DeBruijn graphs built from reads are composed of one connected component with
this k-mer size.

To evaluate the effect of correction on downstream analysis, we call variants on
the corrected reads with freebayes. We compare the set of variants found in any
dataset between freebayes, nanopolish and medaka. The result is presented in
Figure 4. We can notice an important number of variants common with all variant
callers, but half of the variants found by freebayes on the corrected reads are found
exclusively by freebayes.

This comparison is not straightforward because we compare variant calling on
raw reads and corrected reads. Moreover, we did not have a ground truth like manual
curation or variant calling with second-generation reads to evaluate if the variants
found only by freebayes are genuine variants. However, we plan to do this analysis
in the future.

3.2 Pcon & Br
To evaluate Pcon & Br, we use some real and synthetic datasets. A resume of the
main properties of those datasets are present in Table 1

To evaluate Pcon’s performance we compare wall clock time and memory usage
against two other tools jellyfish [4] and kmc [8] (in ram mode), on metagenomic
dataset reads. The results are presented in Figure 5. We observe that Pcon is the
tool that has the best wall clock computation and memory usage (except for k = 19.

To evaluate Br’s performance we computing the error rate with the same method
used previously on PanCov-Correct and compare our results with other self-correction
tools: CONSENT [9], NECAT [10] and Canu [11] correction module. Results on our
dataset are shown in Figure 6.

We observe that the runtime of Br grows slower than that of other tools. Br
memory usage with k = 19 is large (140 Gb), but constant. The initial error rate
impacts the corrected error rate for all tools, but this impact is larger for Br. On
bacterial datasets with relatively small error rates, around 6%, Br performs similarly
to other tools. Nevertheless, on more complex datasets like yeast and C. elegans, Br
] has room for improvement.

6

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 5. Comparison of Pcon computation time and memory usage (in purple)
against different k-mers counter on different k-mer size.

Figure 6. Runtime, memory usage and error rate, of Br, CONSENT, NECAT and Canu
each point corresponds to a dataset. Canu, CONSENT and NECAT didn’t finish in less
than 9 hour on all dataset. The black line correspond to identity between original
and corrected error rate.

7

Correcting Long-Reads with k-mers: A Dream Comes True

4. Conclusion
PanCov-Correct produces good results in terms of correction quality, and down-
stream analysis allows the discovery of new variants in the COVID-19 sample. We
plan to create a standalone tool with a similar method to apply it easily to other
organisms.

Pcon for its specific target, k-mers with an abundance lower than 20, is faster than
other k-mer counters. Preliminary results show that Br performs good correction
faster than other tools, and recent improvement of raw long-read quality could help
Br to perform a better correction. Another improvement could be to use another
set structure than the one provided by Pcon, to reduce the memory impact and use
larger k-mer.

These results on two different correction methods demonstrate that k-mer-based
correction can be applied to long-read sequences. Our ongoing focus is to improve
correction quality, but our first and naive approaches show those strategies’ poten-
tial.

Acknowledgement
The Centre for Information and Media Technology at Heinrich Heine University
Düsseldorf provided computational infrastructure and support.

References
[1] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacte-

rial genome assembled de novo using only nanopore sequencing data. Nature
Methods, 12(8):733–735, jun 2015.

[2] Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biology, 21(1), sep 2020.

[3] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn
graphs from sequencing data quickly and in low memory. Bioinformatics,
32(12):i201–i208, jun 2016.

[4] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, jan
2011.

[5] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-
mer spectrum-based error corrector for illumina sequence data. Bioinformatics,
29(3):308–315, nov 2012.

[6] Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biology, 15(11), nov
2014.

[7] G. Rizk, A. Gouin, R. Chikhi, and C. Lemaitre. MindTheGap: integrated de-
tection and assembly of short and long insertions. Bioinformatics, 30(24):3451–
3457, aug 2014.

[8] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761, may 2017.

8

Correcting Long-Reads with k-mers: A Dream Comes True

[9] Pierre Morisse, Camille Marchet, Antoine Limasset, Thierry Lecroq, and Ar-
naud Lefebvre. CONSENT: Scalable long read self-correction and assembly
polishing with multiple sequence alignment. feb 2019.

[10] Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, Yan Wang,
Yue Han, Feng Luo, and Zhi Xie. MECAT: fast mapping, error correction,
and de novo assembly for single-molecule sequencing reads. Nature Methods,
14(11):1072–1074, sep 2017.

[11] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read as-
sembly via adaptivek-mer weighting and repeat separation. Genome Research,
27(5):722–736, mar 2017.

9

	Introduction
	Materials & Methods
	PanCov-Correct
	Pcon & Br
	Pcon
	Br

	Result
	PanCov-correct
	Pcon & Br

	Conclusion
	References

