
Résumés des exposés de

2020

23 et 24 novembre

Abstract

UMI-Gen: a UMI-based read simulator
for variant calling evaluation
Vincent Sater1,2,3*, Pierre-Julien Viailly2,3, Thierry Lecroq1, Philippe
Ruminy2,3, Élise Prieur-Gaston1, Caroline Bérard2,3 and Fabrice Jardin2,3

1Normandie Univ, UNIROUEN, LITIS EA 4108, 76000 Rouen, France
2Centre Henri Becquerel, 76000 Rouen, France
2Normandie Univ, UNIROUEN, INSERM U1245, Team “Genomics and Biomarkers of
Lymphoma and Solid Tumors”, 76000 Rouen, France
*Corresponding author: vincent.sater@gmail.com

Abstract
With Next Generation Sequencing becoming more affordable every year, NGS
technologies asserted themselves as the fastest and most reliable way to detect Single
Nucleotide Variants (SNV) and Copy Number Variations (CNV) in cancer patients. These
technologies can be used to sequence DNA at very high depths thus allowing to detect
abnormalities in tumor cells with very low frequencies. Multiple variant callers are
publicly available and are usually efficient at calling out variants. However, when
frequencies begin to drop under 1%, the specificity of these tools suffers greatly as true
variants at very low frequencies can be easily confused with sequencing or PCR artifacts.
The recent use of Unique Molecular Identifiers (UMI) [1] in NGS experiments has offered
a way to accurately separate true variants from artifacts. UMI-based variant callers are
slowly replacing raw-read based variant callers as the standard method for an accurate
detection of variants at very low frequencies. However, benchmarking done in the tools
publication are usually realized on real biological data in which real variants are not
known, making it difficult to assess their accuracy. We present UMI-Gen, a UMI-based
read simulator for targeted sequencing paired-end data. UMI-Gen generates reference
reads covering the targeted regions at a user customizable depth. After that, using a
number of control files, it estimates the background error rate at each position and then
modifies the generated reads to mimic real biological data. Finally, it will insert real
variants in the reads from a list provided by the user.

References
[1] Y. Kukita, R. Matoba, J. Uchida, T. Hamakawa, Y. Doki, F. Imamura, K. Kato, High-fidelity target

sequencing of individual molecules identified using barcode sequences: de novo detection and absolute
quantitation of mutations in plasma cell-free DNA from cancer patients, DNA Res 22 (2015) 269–277.

URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535617/. doi:10.1093/dnares/dsv010.

1

mailto:vincent.sater@gmail.com

Extended abstract
Enabling multiscale variation analysis with
genome graphs
Brice Letcher1*, Martin Hunt1 and Zamin Iqbal1

1EMBL-EBI, Hinxton, United Kingdom
*Corresponding author: bletcher@ebi.ac.uk

Abstract

Standard approaches to characterising genetic variation revolve around mapping reads to a refer-
ence genome, but high genetic diversity leads to biases in mapping and variation detection. Genome
graphs have been proposed as a means to address this and alleviate mapping bias. However when
genotyping genome graphs, we need to define which variant sites are in the graph and what refer-
ence to express them against. Notably, with enough samples or in highly diverse genomic regions
”nested variation” naturally occurs- a long deletion which is an alternate allele to multiple SNPs,
or diverged haplotypes with small variants on top of each. There is currently no tool that models
these relationships and meaningfully outputs variation at multiple scales.
We demonstrate our software gramtools can accurately genotype dense variation at multiple scales,
outperforming reference-based variant callers and state of the art genome graph tools on two datasets
of microbial pathogens. Many species and genes of great interest harbour high levels of genetic
diversity where multiscale variation naturally occurs and requires consideration. We provide a new
output format for accessing all variation in directed acyclic genome graphs allowing straightforward
genotyping of sample cohorts, finer resolution of genetic variation and the definition of alternate
references.

Keywords
Genome graphs— Variant calling — P. falciparum — M. tuberculosis

1. Introduction
Genome graphs are graph structures extending single, linear reference genomes with
known population genetic variation or candidate variants. They are used as objects
that remove reference bias [1] and as objects that enable genotyping across samples
at the same variant sites [2].

In genome graphs built from enough samples or in highly diverse genomic regions,
defining which variant sites are present and what reference to express them against
becomes non-trivial. In particular in such graphs variation starts to appear at
multiple scales, with two naturally occurring cases. First, when analysing structural
variants and small variants together, SNPs can occur under long deletions. Second, in
genes with divergent forms or in long insertions, SNPs can occur on top of alternate
haplotypes.

There is currently no tool that models these relationships and meaningfully
outputs variation at multiple scales. Here we present a framework to identify, call
and output all identified variation in directed acyclic genome graphs using the open-

1

Enabling multiscale variation analysis with genome graphs

source software gramtools (https://github.com/iqbal-lab-org/gramtools). We give
applications in two microbial datasets illustrating genotyping performance compared
to the state of the art and a new analysis in a previously inaccessible genomic region.

2. Methods
gramtools implements a workflow for building, genotyping and augmenting genome
graphs. To genotype, we map reads from whole-genome sequencing experiments
to a unique data structure developed for gramtools [3] and record coverage with
awareness of horizontal (genomic repeats) and vertical (allelic repeats) mapping
uncertainty.

Genotyping produces three main outputs: a personalised reference genome for the
sample, a VCF of called variants expressed against the standard reference genome,
and a JSON of calls at each variant site in the graph. The latter includes variant sites
which are ”nested” in others and sites which occur on different sequence backgrounds
or references.

The algorithm for nested genotyping is illustrated in Fig. 1. We refer to each
outgoing branch from a parent site as a haplogroup, for group of related haplotypes.

Ref: A Alts: {A,G} GT: G

3

3

1

2 2

A

CC

C

3 3

A

G T

11 1

2 2

A

CC

C

3

A

G T

Ref: AAT Alts: {AGT, CC} GT: AGT Ref: CC Alts: {} GT: null

Ref: CC Alts: {CC,C} GT: CC

1
1

2

A

CC

C

3 3

A

T

2 2

G

1
1

2 2

A

A

G T

C

3
CC

a) b)

c) d)

Figure 1. Nested genotyping procedure. Nodes with numbers mark variant
sites. In each panel, blue-filled nodes mark which site is being processed, red-filled
nodes mark called alleles, and red paths mark alleles considered for genotyping. The
example shows haploid genotyping. a. Genotyping of child site 2. b. Genotyping of
child site 3. c. Genotyping of parent site 1. d. Invalidation (null calling) of site 3.

3. Results and Discussion

2

Enabling multiscale variation analysis with genome graphs

3.1 Multiscale-aware variant call format
We developed a JSON-based output format providing one entry per identified site in
a directed acyclic genome graph and storing parent/child relationships between sites.
This enables two features. First, it makes incompatibilities between sites explicit
allowing genotyping to enforce consistency (Fig.1). Second, it enables defining
alternate references based on haplogroups, and which ones variants fall on.

An example is given in Fig. 2. In contrast to VCF, the format also records
graph topology allowing queries such as extracting all variant records under a given
haplogroup.

{ "ALS":
["CTGATGTTAAT"],
"GT": [[0]],
"HAPG": [[0]],
"POS": 11826,
"SEG": "Pf3D7_10_v3"}

0

1
Site 0

Site 1 Site 2

Site 3

{ "Child_Map":
 {
 "0":

{"1": [1, 2], "0": [3]}
 },
"Lvl1_Sites: [0],
"Samples": [...],
"Sites": [...] }

linear reference
Figure 2. JSON variant call format introduced in gramtools. A graph with
nested variation is shown; gramtools gives each identified site a number ID. Black
nodes contain sequence. Haplogroups, groups of related haplotypes in the graph, are
labeled on the edges leaving the first node of Site 0. The red path shows the
embedded linear reference genome, and Site 1 and 2 occur on a non-reference
sequence background. Top-right text shows part of the top-level of the call format.
”Child Map” associates a site ID to sites occurring under it: here we record that site
0 contains Site 1 and Site 2 under haplogroup 1, and Site 3 under haplogroup 0.
”Lvl1 Sites” gives site IDs which are not children of any other sites, allowing
recursive exploration of the child map. ”Sites” is an array indexed by each site ID:
each entry is a JSON containing the same information as a VCF line, shown here
above Site 1.

3.2 Genotyping performance
3.2.1 Comparison with reference-based variant callers
We performed an experiment on a genome graph of variation from 2,500 samples in
four clinically relevant surface antigens of the malaria parasite P. falciparum. Using
14 validation samples with long-read assemblies we show gramtools genotype calls
outperform variant callers samtools and cortex run against the reference genome
alone. We further show the gramtools inferred personalised reference genome allows

3

Enabling multiscale variation analysis with genome graphs

those tools to discover previously inaccessible variation, and that gramtools finds
recombinants between input haplotypes in the graph.

3.2.2 Comparison with state of the art genome graph tools
We built graphs containing 45 distinct deletions between 100 and 13,000 bp found in
17 samples and all variation overlapping the deletions in a further 1,000 samples of
M. tuberculosis. Using long-read assemblies for the 17 samples we show gramtools
is better able to resolve these regions compared to state of the art tools vg [1]
and graphtyper2 [4]. Our nesting-aware genotyping process guarantees mutually
exclusively calling deletions and the small variants overlapping them.

3.3 Analysis of variation on top of locally defined references
We genotyped 700 P. falciparum samples at the surface antigen DBLMSP2 in which
two diverged forms are known to segregate, likely due to balancing selection [5]. We
show how gramtools recovers the two forms and is able to output variation on top
of each diverged form allowing the study of variation on different references.

3.4 Discussion
We have presented a method for identifying, calling and outputting multiscale
variation in gramtools. Analogous to the recently proposed rGFA format for
describing sequences in genome graphs [6], we provide a format for describing variant
calls in genome graphs. We believe such formats are required to better study and
express variation in genome graphs.

To be useful, genome graphs should support three concepts: compatibility,
consistency and interpretability. Compatibility is maintaining support for linear
references. Consistency is outputting a fixed set of variants for a given genome
graph. Interpretability is providing a simple way of analysing variation at multiple
scales or on different references. In gramtools we propose a framework and format
implementing each of these concepts.

Acknowledgments
The authors thank Rachel Colquhoun for the tool used to construct graphs, Sorina
Maciuca for algorithms in gramtools and Robyn Ffrancon for software engineering
in gramtools.

Brice Letcher is a predoctorate fellow at EMBL-EBI, funded by EMBL and
registered at the University of Cambridge.

References
[1] Erik Garrison, Jouni Sirén, Adam M Novak, Glenn Hickey, Jordan M Eizenga,

Eric T Dawson, William Jones, Shilpa Garg, Charles Markello, Michael F Lin,
Benedict Paten, and Richard Durbin. Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nature Biotechnology,
36(9):875–879, August 2018.

[2] Jonas Andreas Sibbesen, Lasse Maretty, and Anders Krogh. Accurate genotyp-
ing across variant classes and lengths using variant graphs. Nature Genetics,
50(7):1054, July 2018.

4

Enabling multiscale variation analysis with genome graphs

[3] Sorina Maciuca, Carlos del Ojo Elias, Gil McVean, and Zamin Iqbal. A natural
encoding of genetic variation in a Burrows-Wheeler Transform to enable mapping
and genome inference. In Springer, editor, Proceedings of the 16th International
Workshop on Algorithms in Bioinformatics, Volume 9838 of Lecture Notes in
Computer Science, pages 222–233, 2016.

[4] Hannes P. Eggertsson, Snaedis Kristmundsdottir, Doruk Beyter, Hakon Jons-
son, Astros Skuladottir, Marteinn T. Hardarson, Daniel F. Gudbjartsson, Kari
Stefansson, Bjarni V. Halldorsson, and Pall Melsted. GraphTyper2 enables
population-scale genotyping of structural variation using pangenome graphs. Na-
ture Communications, 10(1):5402, November 2019. Number: 1 Publisher: Nature
Publishing Group.

[5] Alfred Amambua-Ngwa, Kevin K. A. Tetteh, Magnus Manske, Natalia Gomez-
Escobar, Lindsay B. Stewart, M. Elizabeth Deerhake, Ian H. Cheeseman, Christo-
pher I. Newbold, Anthony A. Holder, Ellen Knuepfer, Omar Janha, Muminatou
Jallow, Susana Campino, Bronwyn MacInnis, Dominic P. Kwiatkowski, and
David J. Conway. Population Genomic Scan for Candidate Signatures of Bal-
ancing Selection to Guide Antigen Characterization in Malaria Parasites. PLOS
Genetics, 8(11):e1002992, November 2012.

[6] Heng Li, Xiaowen Feng, and Chong Chu. The design and construction of reference
pangenome graphs. arXiv:2003.06079 [q-bio], March 2020. arXiv: 2003.06079.

5

Extended abstract
Evaluation of open search methods based
on theoretical mass spectra comparison
Albane Lysiak1,3, Guillaume Fertin1*, Géraldine Jean1, Dominique Tessier2,3

1Université de Nantes, CNRS, LS2N, F-44000, Nantes, France
2INRAE, BIBS facility, F-44316, Nantes, France
3INRAE, UR BIA, F-44316
*Corresponding author: guillaume.fertin@ls2n.fr

Abstract
Mass spectrometry remains the privileged method to characterize proteins. Nevertheless, most of
the spectra generated by an experiment remain unidentified after their analysis, mostly because of
the modifications they carry. Open Modification Search (OMS) methods offer a promising answer
to this problem. However, assessing the quality of OMS identifications remains a difficult task.
Aiming at better understanding the relationship between (i) similarity of pairs of spectra provided
by OMS methods and (ii) relevance of their corresponding peptide sequences, we used a dataset
composed of theoretical spectra only, on which we applied two OMS strategies. We also introduced
two appropriately defined measures for evaluating the above mentioned spectra/sequence relevance
in this context: one is a color classification representing the level of difficulty to retrieve the pep-
tide sequence that generated the identified spectrum ; the other, called LIPR, is the proportion
of common masses, in a given Peptide Spectrum Match (PSM), that correspond to dissimilar se-
quences. These two measures were also considered in conjunction with the classical False Discovery
Rate (FDR). The three above mentioned measures allowed us to clearly determine which of the
two studied OMS strategies outperformed the other, both in terms of number and of accuracy of
identifications. Even though quality evaluation of PSMs in OMS methods remains challenging, the
study of theoretical spectra is a favorable framework for going further in this direction.

1. Introduction
Mass spectrometry in tandem MS mode (MS/MS) is the most powerful method to
identify proteins and characterize their modifications on a large scale. However, most
of the spectra are left unidentified after their analysis by a dedicated software. This
is likely due to the large proportion of spectra generated from proteins carrying mod-
ifications [1]. Software usually infer the identification of an experimental spectrum
from its similarity to reference spectra. When a peptide carries a modification, its
mass is by nature modified, which prevents its identification by conventional methods
that compare each experimental spectrum with only a restricted set of reference
spectra, approximately sharing the same mass in order to avoid excessive runtime.
On the other hand, Open Modification Search (OMS) methods compare each experi-
mental spectrum to all the reference spectra representing a proteome. Thus, this
comparison produces a list of Peptides to Spectrum Matches (PSMs) per experimental

1

Evaluation of open search methods based on theoretical mass spectra comparison

spectrum, and a mass difference ∆m 6= 0 between the experimental spectrum and its
associated peptide is assumed to be due to one or several modifications that differen-
tiate them. Many scores exist to evaluate the similarity between two spectra, which
all take into account, at a certain level, the number of peaks (i.e., of masses) that are
shared by the two spectra, a number called shared peaks count (SPC). Despite the
scientific relevance of better spectra identifications, OMS methods are still underused,
notably because their reliability remains debated. It is therefore important to better
describe the advantages and limitations of these methods. We focused our study
on a thorough understanding of two widely spread strategies to determine the best
PSM for each experimental spectrum. In the first strategy Strategy1, the best PSM
is chosen according to a score that does not take ∆m into account. The second
strategy Strategy2 tries to improve the alignment – and thus the score – of all the
PSMs according to ∆m before the choice of the best PSM (see Figure 1). In order
to determine the most efficient strategy, a prerequisite was to be able to implement
both strategies using the same software, which implies the availability of very efficient
spectra comparison and alignment algorithms. The SpecOMS software [2], which we
have previously developed, fulfills these conditions.

Figure 1. MS/MS spectra matches and their peptide sequences. b-ions (containing
masses information from the prefix of the peptide) are displayed in blue, y-ions (containing masses
information from the suffix of the peptide) in red, and matches between spectra in dashed lines.
Intensities of all peaks are set to an arbitrary unit value. The middle EAEDISEK MS/MS spectrum
shares 7 masses (black dashed lines) with the above native EAEISEK spectrum. After a shift of
∆m at position 3 in EAEISEK (below), 8 new masses match with EAEDISEK (shown in green),
and one match is removed (grey dashed line). The SPC is then improved from 7 (raw SPC) to 14
(shift SPC).

To compare in-depth the limits of each strategy, we decided to ground this
study using the theoretical spectra derived from the human proteome, considering
successively each theoretical spectrum in the role of an experimental spectrum. Doing
so, we eliminate the inherent identification difficulties due to the imperfection of
experimental spectra (e.g. noise, missing peaks) and concentrate on the benefits of
each strategy. Hence, PSMs with ∆m 6= 0 can only be explained by differences in
terms of sequence, namely insertions, deletions and/or substitutions of one or several
amino acids. Every PSM matching a peptide to itself was considered irrelevant and

2

Evaluation of open search methods based on theoretical mass spectra comparison

consequently forbidden. Many OMS methods estimate the FDR of their results
with a target/decoy approach [3]. We also used this approach to compare both
strategies, even though it is still unclear whether or not this method underestimates
the incorrect identifications [4, 5]. That is why we propose two additional measures
of the PSM characteristics to evaluate their quality and compare the strategies.

2. Methods
Peptide identification using SpecOMS We implemented two strategies to find the
best PSMs in SpecOMS. Next, we applied these two strategies to compare the set
of theoretical spectra generated from the human proteome against themselves. A
peptide that plays the role of an experimental spectrum in PSM is called the bait,
whereas a peptide associated to a bait in a PSM is called a hit. Parameters were
set in such a way that SpecOMS extracted from its data structure SpecTrees [6]
all pairs of spectra of the form (bait,hit) whose SPC is greater than or equal to
7. Depending on the run, the parameter “shift” of SpecOMS was set to false
(Strategy1) or true (Strategy2) (see Figure 2). More precisely, in Strategy1, for each
bait, SpecOMS selects the best PSM based on the highest SPC, a score that we call
raw SPC. In Strategy2, the best PSM for a given bait b is selected after the following
two-step procedure is applied: first, for every candidate hit h for b such that ∆m 6= 0,
SpecOMS realigns h to b by shifting its masses (by ∆m) at each possible relevant
location in the spectrum, and retains the shift location in h that yields the best
newly computed SPC. Second, SpecOMS chooses the best PSM among the candidate
PSMs for b, based on the newly computed SPC, that we call shift SPC.

Figure 2. Determining the best PSM in each strategy. Suppose, fictitiously, that a given
bait is to be compared to 4 peptides (called hits). Hit 1 is discarded as its raw SPC with bait is
below the imposed threshold of 7. Hits 2, 3 and 4 are candidate PSMs for bait. Since ∆m 6= 0 for
Hits 2, 3 and 4, a shift may be applied, and in that case shift SPC is obtained (with shift SPC ≥
raw SPC by definition). In Strategy1, the best PSM for bait is Hit 2, as it is based on raw SPC. In
Strategy2, the best PSM for bait is Hit 3, as it is based on shift SPC.

Data and theoretical spectra generation The human proteome was downloaded from
Ensembl 99, release GrCh38. Proteins predicted with the annotation “protein coding”
were added to 116 contaminant proteins downloaded from the cRAP contaminant
database. The resulting set of proteins is referred to as the target database, in silico
digested by trypsin. Each peptide is fragmented in silico by SpecOMS, so as to
transform it into a theoretical spectrum. For this, ions from the b and y series are
generated. For a given peptide, the set of generated masses represents its theoretical
spectrum.

3

Evaluation of open search methods based on theoretical mass spectra comparison

Measuring the quality of PSMs
False Discovery Rate (FDR). The first classical measure that we used is the number
of PSMs we can validate at a given False Discovery Rate (FDR). We calculated
the FDR as the proportion of best PSMs of the form (bait,hit) for which the hit
is a decoy, over the total number of best PSMs. In this work, we were essentially
interested by PSMs for which the FDR is less than 1%.

Color classification. Another parameter which we consider as informative for validat-
ing MS/MS results, notably in this context, is our ability to explain a PSM of the
form (bait,hit) obtained by a given strategy ; by “explain”, we mean unambiguously
determine the transformation (in terms of amino acid sequence) that is required to
retrieve the bait starting from the hit. Thus, the question we ask ourselves is the
following: given a PSM (bait,hit) together with ∆m, shift SPC and its corresponding
best shift location, how difficult is it to precisely explain bait from hit ? For this,
we introduce here a classification of PSMs into three colors (Green, Orange or Red),
depending on this level of difficulty, from the easiest (Green) to the hardest (Red).
In a nutshell, Green means that we are able to explain the link between hit and bait
unambiguously, Orange contains some level of ambiguity, and Red means that further
information and/or computational efforts are necessary to explain the relationship
between bait and hit. See Figure 3 for examples of the color classification.

Figure 3. Illustration of the Green/Orange/Red classification of PSMs. The first two
rows present PSMs with a bait unambiguously deductible from the information given by the PSM,
thus classified as Green. In the first example, ∆m corresponds to the mass of S, which can thus be
added in the hit at the given location to retrieve the bait. In the second example, the absolute value
of ∆m corresponds to the mass of EPPNPE, which can be deleted from the hit to retrieve the bait.
In the third row, ∆m can correspond to two possible amino acid sequences (VH or HV). Such PSM
is thus classified as Orange. In the last three rows, transforming hit into bait is too ambiguous,
although sequences may be close (e.g., first red row). In all cases, such PSMs are classified as Red.

Low Information Peaks Rate (LIPR). In an MS/MS experiment, spectra are con-
sidered similar to each other if they share a high number of masses. Ions from the
same series (i.e., y-ions or b-ions in our case), which represent the same fragment,
necessarily possess the same mass. Consequently, common masses represent relevant
information concerning sequence similarity. However, the converse is not always
true : identical masses may not represent identical sequences, for example when
amino acids are permuted (e.g., AEAE and EEAA have the same mass) or in more
complex situations when combinations of different amino acids turn out to have

4

Evaluation of open search methods based on theoretical mass spectra comparison

the same total mass (e.g., KE and GVT have the same mass). Following the above
discussion, we introduce here a new measure, that we call Low Information Peaks
Rate (or LIPR). For a given PSM (bait,hit), LIPR(bait,hit) is the percentage of
common masses between bait and hit that do not correspond to identical sequences.
A LIPR close to 0 implies that the two amino acid sequences of bait and hit are
very similar. In that case, one can argue that the PSM at hand is relevant, and that
retrieving bait from hit may be feasible. On the other hand, when LIPR is close to
100, both sequences, although sharing a non negligible number of masses, represent
very dissimilar sequences, and the PSM can thus be considered as debatable.

3. Results and Discussion
We successively implemented Strategy1 and Strategy2 to compare all the theoretical
spectra generated from the human proteome (572 063 spectra) against a database
merging the target and decoy human proteins (1 148 608 spectra). About 80% of
the 572 063 tryptic peptides from the human proteome share at least 7 peaks with
any other peptide, and about 23% of them share at least 10 peaks (target or decoy).
Respectively to an FDR less than 1%, Strategy1 validates 17 160 PSMs with a
minimal raw SPC of 17 (i.e. considering best PSMs for which raw SPC ≥ 17),
while Strategy2 validates 57 784 PSMs with a minimal shift SPC of 21. Strategy2
recruits more than three times more PSMs than Strategy1, thus we can conclude
that Strategy2 behaves better than Strategy1 according to the number of validated
PSMs. But one may wonder to what extent the information given by these PSMs is
enough to restore the correct amino acid sequence of the baits.
We could get the distributions of the sets PSM1 and PSM2 obtained respectively by
Strategy1 and Strategy2 among the 3 color classes, as well as the evaluation of the
LIPR feature. Both strategies behave in a similar fashion, but at less than 1% FDR,
Strategy2 validates roughly three times more Green PSMs than Strategy1 (27 211 vs
9 153). Thus, at first glance, the number of additional identifications obtained by
Strategy2 (compared to Strategy1) does not come at the cost of a deterioration of
the quality of the results. In terms of LIPR, it can be noted that its average value is
higher for PSM1 (38.5% for PSM1 vs 22.97% for PSM2).
The performances obtained by Strategy2 also lead us to conclude that, among the
two, Strategy2 is the one that should be implemented in OMS software. We saw
that although Strategy2 recruits more Green and Orange PSMs than Strategy1, it
contains proportionally more Red PSMs. However, the average LIPR from the
Red class obtained by Strategy2 is much lower than for Strategy1. This leads us to
think that a proportion of the Red PSMs from Strategy2, that share enough peaks
corresponding to common subsequences, could be considered as “almost valid” PSMs.
More precisely, we believe that with additional methodological and computational
effort, some of these Red PSMs could be transfered to the Orange or Green category,
an effort that methods implementing Strategy2 should pursue.
By comparing two OMS strategies with theoretical peptides and new indicators, we
also developed an environment which allowed us to see and understand elements that
are more difficult to comprehend in an experimental context. This protocol could be
used to understand principles that are at the heart of other (OMS) MS identification
tools in order to configure and calibrate them.

5

Evaluation of open search methods based on theoretical mass spectra comparison

References
[1] J. Griss, Y. Perez-Riverol, S. Lewis, D. L. Tabb, J. A. Dianes, N. Del-Toro,

M. Rurik, M. W. Walzer, O. Kohlbacher, H. Hermjakob, R. Wang, and J. A.
Vizcáıno. Recognizing millions of consistently unidentified spectra across hundreds
of shotgun proteomics datasets. Nature Methods, 13(8):651–656, 2016.

[2] M. David, G. Fertin, H. Rogniaux, and D. Tessier. SpecOMS: A Full Open
Modification Search Method Performing All-to-All Spectra Comparisons within
Minutes. Journal of Proteome Research, 16(8):3030–3038, 2017.

[3] J. E. Elias and S. P. Gygi. Target-decoy search strategy for increased confidence
in large-scale protein identifications by mass spectrometry. Nature Methods,
4(3):207–214, 2007.

[4] W. S. Noble. Mass spectrometrists should search only for peptides they care
about. Nature Methods, 12(7):605–608, 2015.

[5] A. Sticker, L. Martens, and L. Clement. Mass spectrometrists should search
for all peptides, but assess only the ones they care about. Nature Methods,
14(7):643–644, 2017.

[6] M. David, G. Fertin, and D. Tessier. SpecTrees: An Efficient Without a Priori
Data Structure for MS/MS Spectra Identification. In Algorithms in Bioinformatics
(WABI), volume 9838 of Lecture Notes in BioInformatics, pages 65–76, 2016.

6

Abstract
DeepG4 : A deep learning approach to
predict active G-quadruplexes
ROCHER V.1, GENAIS M.1, NASSEREDDINE E.1 and MOURAD R.1*
1LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3
*Corresponding author: raphael.mourad@ibcg.biotoul.fr

Abstract
G-Quadruplex (G4) are alternative DNA secondary structures composed of Guanine-
rich DNA sequences which can form a four-stranded structure based on a simple
strand, and let the second one free [1]. These structures have been found initially
on telomeres, but more recent studies found an enrichment of theses structures
on promoters of active genes, and suggest an active role in transcription of these
genes [2]. Former in-silico methods to detect and study G4 remained mostly on
the detection of a specific motif chain [3], but recent methods have been developed
to identify G4 at genome-wide scale using Next Generation sequencing approach,
like G4-seq [4](in-vitro G4) and BG4-seq [5](in-vivo). Here, we propose a sequence-
based computational Deep learning model to predict in-vivo DNA G4 using the
DNA sequences of BG4-seq peaks, in order to detect new motifs involved in the G4
prediction. Deep learning is a recent and popular Machine learning set of approaches
where model learn features directly from the data, meaning that we could identify
de-novo motifs that are related to G4 prediction. This model can be applied to any
DNA sequence to predict the G4 formation, and be used in genetics to study the
impact of SNP’s on the DNA G4 formation propensities.

References
[1] D. Sen and W. Gilbert. Formation of parallel four-stranded complexes by guanine-

rich motifs in DNA and its implications for meiosis. Nature, 334(6180):364–366,
Jul 1988.

[2] J. Spiegel, S. Adhikari, and S. Balasubramanian. The Structure and Function of
DNA G-Quadruplexes. Trends Chem, 2(2):123–136, Feb 2020.

[3] J. L. Huppert and S. Balasubramanian. Prevalence of quadruplexes in the human
genome. Nucleic Acids Res., 33(9):2908–2916, 2005.

[4] G. Marsico, V. S. Chambers, A. B. Sahakyan, P. McCauley, J. M. Boutell, M. D.
Antonio, and S. Balasubramanian. Whole genome experimental maps of DNA
G-quadruplexes in multiple species. Nucleic Acids Res., 47(8):3862–3874, 05 2019.

[5] R. Hänsel-Hertsch, D. Beraldi, S. V. Lensing, G. Marsico, K. Zyner, A. Parry,
M. Di Antonio, J. Pike, H. Kimura, M. Narita, D. Tannahill, and S. Balasubrama-
nian. G-quadruplex structures mark human regulatory chromatin. Nat. Genet.,
48(10):1267–1272, 10 2016.

1

Abstract

1

Prediction of auxin response elements based on
data fusion approach
Nesrine Sghaier

1
*, Rayda ben Ayed

2
, Ahmed Rebai

2

1
Department of Computer Science, University of Sousse, Sousse, Tunisia

2
Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia

*Corresponding author: nesrine.sghaier@ymail.com

Abstract

The plant hormone "auxin" is a key regulator of plant development and environmental

responses. It has critical roles in directing plant cell division, differentiation, and

elongation [1]. The identification of Auxin-response element (AuxRE) is one of the most

important issues to understand the auxin regulation of gene expression. Over the past few

years, a large number of motif identification tools have been developed. Despite this

considerable efforts provided by computational biologists, building reliable models to

predict regulatory elements has still been a difficult challenge [2, 3].

We propose in this work a data fusion approach for the prediction of AuxRE. Our

method is based on the combined use of Dempster–Shafer evidence theory and fuzzy

theory. Our method is based on a combination of predictions coming from two

techniques commonly used in pattern finding: Overrepresented motifs and Linear

Discriminant Analysis. The idea is to extract, for each method, some features and

to combine it using the Dempster–Shafer (DS) rule, called orthogonal sum.

To evaluate our model, we have scanning the DORNRÖSCHEN promoter by our

model. All proven AuxRE present in the promoter has been detected. At the 0.9 threshold

we have not false positive. The comparison of the results of our model and some previous

motifs finding tools, show that our model can predict AuxRE more successfully than the

other tools and produce less false positive. The comparison of the results before and after

combination show the importance of Dempster–Shafer combination in the decrease of

false positive and to improve the reliability of prediction. For an overall evaluation we

have chosen to present the performance of our approach in comparison with other

methods. Our method has the high degree of sensitivity (Sn) and Positive Predictive Value

(PPV) with a value of 79 and 48.17, respectively.

References
[1]

 B. Möller and D. Weijers: “Auxin control of embryo patterning.” Cold Spring Harb.

Perspect. Biol. vol. 1, no. 5, pp. a001545, 2009.
[2]

 M.K. Das and H.-K. Dai: “A survey of DNA motif finding algorithms.” BMC

Bioinformatics. vol. 8, no. Suppl 7, pp. S21, 2007.
[3]

 I.W. Davis, C. Benninger, P.N. Benfey, and T. Elich: “Powrs: Position-sensitive motif

discovery.” PLoS One. vol. 7, no. 7, pp. e40373, 2012.

Abstract

Identification of bacterial strains using
Oxford Nanopore sequencing
Grégoire Siekaniec1,2*

1Univ Rennes, Inria, CNRS, IRISA, Rennes F-35000, France
2 STLO, INRAE, Agrocampus Ouest, Rennes, France
*Corresponding author: gregoire.siekaniec@inria.fr

Abstract
The bacterial taxonomic assignation from sequencing data is usually based on few

ubiquitous genes (RNA16S, ITS, MLST). However, due to the close genomic proximity
of strains of a same species, this approach does not allow to distinguish them. Thanks to
the reduction in sequencing costs, it is now possible to consider routine sequencing and
identification based on whole bacterial genomes. Most current taxonomic assignation
software based on whole genome only support short reads data. In contrast, our project is
based on the Oxford Nanopore technology (MinION device) generating long DNA
sequences. Using ONT means tackle with high error level (about 6% on raw uncorrected
reads). Main existing software dealing with long reads stop at the species level, which are
very efficient but do not fully exploit the potential of long reads. We want to show using
the Streptococcus thermophilus species, that consideration of the whole genome combined
with the use of long reads generally enables rapid distinction between one strain and
another.

Our method is based on an efficient storing of the known genome sequences of strains.
We have chosen spaced seeds [1] for this task, which are more sensitive than standard
kmer indexes. Spaced seeds are kmers with defined positions that are not taken into
account during matching. Then, with the help of Téo Lemane (PhD student in our lab) we
extended to spaced seeds the HowDeSBT structure explained and implemented in [2] in
order to obtain a small index allowing to store the genomes. Once the index is built, the
second issue is the query part that assigns reads to strains. First, reads are selected based on
a quality filter, to limit the error rate. Then, the data structure is requested with the seed
matches extracted from the reads, each read is assigned to its potential strains and a
presence/absence matrix (strains x reads) is created. Finally, the identification step was
performed as an optimization issue, by looking for the minimum number of strains that can
explain all the reads from the strains x reads matrix. Our implementation used the answer
set programming (ASP) framework.

References
[1] Laurent Noé, Best hits of 11110110111: model-free selection and parameter-free sensitivity

calculation of spaced seeds, Algorithms for Molecular Biology, volume 12, issue 1, 2017.
[2] Robert S. Harris, and Paul Medvedev. Improved representation of sequence Bloom trees.

Bioinformatics, volume 36, issue 3, pages 721–727, February 2020, btz662

1

Abstract
Nanopore MinION long read sequencer:
an overview of its error landscape
Clara Delahaye1*, Jacques Nicolas2

1,2Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France
*Corresponding author: clara.delahaye@irisa.fr

Abstract
Third generation ONT’s (Oxford Nanopore Technologies) sequencer provides longer
DNA fragments (mean read length often over 10 kB) than usual second generation
sequencers. However, this technology is also more error-prone [1], with currently
around 6% of error on raw reads. Many articles worked on read correction methods
(there even is a tool to assess error correction methods [2]), while few addressed the
detailed characterization of observed errors [3], as the frequent (almost monthly!)
updates in ONT chemistry and softwares hinder the task. The MinION sequencer is
now getting more stable. We propose here an up-to-date view of its error landscape,
using state-of-the-art flowcell and basecaller. We worked on bacterial and human
data to get an overview of Nanopore sequencing error biases.

As opposed to usual NGS, Nanopore sequencing does not requires PCR amplifi-
cation, thus one expects that this technology would not suffer from GC bias. Yet we
found that it is actually a decisive factor linked to sequencing errors. In particular,
low-GC reads have almost 2% fewer errors than high-GC reads. Nanopore sequencers
are also known to struggle sequencing accurately repeated regions (homopolymers or
regions with short repeats). Our work highlighted that for these regions, being the
source of about half of all sequencing errors, the error profile also depends on the
GC content and shows mainly deletions, although there are some reads with long
insertions. Another interesting finding is that the quality measure offers valuable
information on the error rate as well as the abundance of reads.

Overall we hope this work will help designing more accurate methods for error
correction.

References
[1] C. L. Ip, M. Loose, J. R. Tyson, M. de Cesare, B. L. Brown, M. Jain, R. M.

Leggett, D. A. Eccles, V. Zalunin, J. M. Urban, et al. Minion analysis and
reference consortium: Phase 1 data release and analysis. F1000Research, 4, 2015.

[2] C. Marchet, P. Morisse, L. Lecompte, A. Lefebvre, T. Lecroq, P. Peterlongo, and
A. Limasset. ELECTOR: evaluator for long reads correction methods. NAR
Genomics and Bioinformatics, 2(1), 11 2019. lqz015.

[3] R. R. Wick, L. M. Judd, and K. E. Holt. Performance of neural network basecalling
tools for oxford nanopore sequencing. Genome Biology, 20(1):129, 2019.

1

Abstract
Contig error correction based on
linked-read sequencing data
Andreea Dréau*, Clément Birbes, Christophe Klopp and Matthias Zytnicki

INRAe, Unité de Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
*Corresponding author: andreea.dreau@inrae.fr

Abstract
One of the main steps in genome assembly is contig assembly, which consists in
reconstructing long and contiguous chromosomal parts based on the overlaps between
the reads. The latest sequencing advances allow the construction of longer and
more accurate contigs, but misassemblies are still present due to repeat sequences,
heterozygosity and read errors. A technique that can be used for identifying these
misassemblies is linked read sequencing since it provides long-range and low-error
information. This type of sequencing is already used for correcting contigs by
Tigmint[1], a tool that splits the contigs in loci with low molecule coverage. However,
in case of contigs built from long reads and with the latest assemblers, the coverage
drop is no longer sufficient for detecting misassemblies.

In this study we introduce a new correction method based on linked read in-
formation and adapted to more accurate contigs. We start by aligning the linked
reads to the contigs and identifying the molecules by regrouping reads with the same
barcode and aligned in the same region. Then our method computes several metrics
for each contig, such as the molecule coverage, the mean read density per molecule
and the mean molecule length, per 10kb window. For each metric we identify the
outlier values and we split the contig if an interval is considered as outlier for at least
two metrics. We tested the method by scaffolding several bovine assemblies with
3d-dna[2] and different Hi-C libraries. 3d-dna was able to connect more contigs into
scaffolds and even obtain complete chromosomes when applied on contigs split with
our method.

This study is part of the SeqOccIn project (https://get.genotoul.fr/seqoccin/)
conducted by Get and Bioinfo Platforms of Genotoul and supported by Region
Occitanie and FEDER.

References
[1] Shaun D Jackman, Lauren Coombe, Justin Chu, Rene L Warren, et al. Tig-

mint: correcting assembly errors using linked reads from large molecules. BMC
Bioinformatics, 19(1):1–10, 2018.

[2] Olga Dudchenko, Sanjit S Batra, Arina D Omer, et al. De novo assembly of the
Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science,
356(6333):92–95, 2017.

1

Abstract
kmtricks: modular k-mer count matrix and
Bloom filter construction for large read
collections
Téo Lemane1*, Rayan Chikhi2, Pierre Peterlongo1

1Univ. Rennes, Inria, CNRS, IRISA, Rennes, France
2Institut Pasteur, CNRS, Paris, France
*Corresponding author: teo.lemane@inria.fr

Abstract
The exponential growth of sequencing data repositories prompts the development
of algorithms enabling to query those repositories with any sequence of interest
(similarly to Internet search engines). Despite recent intensive developments (see
[1] for a detailed review), even the latest tools cannot be used to screen across
large collections of sequencing experiments. The fundamental need is a compact
data-structure able to assign any queried k-mers, to the list of genomic file(s) (either
sequencing experiment or assembled genomes) where this k-mer occurs.

In this context, we present a novel strategy to construct a one-hash Bloom filter
which is the basic data structure involved in HowDe-SBT [2], one of the state-of-the-
art k-mer indexer. Our method uses minimizers in order to partition and parallelize
computations. It directly counts hash values (instead of k-mers) and outputs a
matrix, in which each column can be seen as a one-hash Bloom filter corresponding
to one data set.

This method improves the efficiency of Bloom filter construction in terms of time
and memory footprint. The matrix structure also enables to leverage information
across samples in order to recover some rare k-mers usually considered as errors. We
will present the algorithmic foundations, current results, and possible future works
on query improvements by taking advantage of the better data locality provided by
the partitioned hash space.

References
[1] Camille Marchet, Christina Boucher, Simon Puglisi, Paul Medvedev, Mikaël

Salson, and Rayan Chikhi. Data structures based on k-mers for querying large
collections of sequencing datasets. bioRxiv, page 866756, dec 2019.

[2] Robert S Harris and Paul Medvedev. Improved representation of sequence Bloom
trees. Bioinformatics, 2019.

1

Abstract
Set-min sketch: a probabilistic map for
power-law distributions with applications to
k-mer annotation
Yoshihiro Shibuya1*, Gregory Kucherov1

1Laboratoire d’Informatique Gaspard Monge, CNRS & Université Gustave Eiffel, Marne-la-Vallée
*Corresponding author: yoshi.itsame@gmail.com

Abstract
Problem: Efficient storage of k-mer counting tables is a crucial part in many
bioinformatics pipelines given the ubiquity of alignment-free methods. Common
counting tools [1, 2, 3, 4] usually output compressed data structures containing both
k-mers and their counter values. These exact representations, albeit more memory
efficient than more naive solutions, remain rather large for in-memory usage even
on modern commodity computers. For example, counting all 32-mers in the human
reference genome with KMC [2] produces a 20 GB file, well above the 8 GB of RAM
most computers have today. For a sufficiently large k, the distribution of k-mer
frequencies (k-mer spectrum) of most datasets follow a power-law distribution, where
most k-mers appear a small number of times and only a few ”heavy hitters” have
large counter values. Representing power-law distributed counters with fixed-size
words can be inefficient because only few k-mers will effectively have a counter using
all allocated bits. Recent solutions try to use small counter words for low frequencies
allocating additional space only when needed [5]. In many applications, explicitly
storing the k-mers alongside their counters can be avoided if the set of k-mers is
static. Minimal Perfect Hash Functions (MPHFs) [6, 7, 8, 9, 10] take advantage of
this intuition by producing a bijective mapping between keys and integer values from
1 to the size of the input set. Both keys and values are handled by a data structure
external to the MPHF, which does not solve the problem of wasting space for small
counters, and needs to be rebuilt from scratch for a new key addition or deletion.

Results: Here we present Set-min sketch, a sketching technique for associative
tables between keys and labels where the distribution of the labels is power-law. In
our work, we focus on the special case where keys are k-mers, labels are multiplicities,
the k-mer spectrum is power-law. We show, both theoretically and experimentally,
that our sketch can be more space-efficient than MPHFs and provides better error
guarantees compared to equally-dimensioned Count-Min sketches [11]

References
[1] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764, March
2011.

1

Set-min sketch

[2] Kokot M, Dlugosz M, and Deorowicz S. KMC 3: counting and manipulating
k-mer statistics, September 2017.

[3] Rizk G, Lavenier D, and Chikhi R. DSK: k-mer counting with very low memory
usage, March 2013.

[4] Prashant Pandey, Michael A. Bender, Rob Johnson, and Rob Patro. A General-
Purpose Counting Filter: Making Every Bit Count. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD ’17,
pages 775–787, Chicago, Illinois, USA, May 2017. Association for Computing
Machinery.

[5] Moustafa Shokrof, C. Titus Brown, and Tamer A. Mansour. MQF and buffered
MQF: Quotient filters for efficient storage of k-mers with their counts and
metadata. bioRxiv, page 2020.08.23.263061, August 2020.

[6] Ye Yu, Djamal Belazzougui, Chen Qian, and Qin Zhang. Memory-efficient
and Ultra-fast Network Lookup and Forwarding using Othello Hashing.
arXiv:1608.05699 [cs], November 2017. arXiv: 1608.05699.

[7] Ye Yu, Jinpeng Liu, Xinan Liu, Yi Zhang, Eamonn Magner, Erik Lehnert,
Chen Qian, and Jinze Liu. SeqOthello: querying RNA-seq experiments at scale.
Genome Biology, 19(1):167, October 2018.

[8] Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit:
Minimal Perfect Hashing via Recursive Splitting. arXiv:1910.06416 [cs], Novem-
ber 2019. arXiv: 1910.06416.

[9] Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and Perfect
Hashing Using Fingerprinting. In Joachim Gudmundsson and Jyrki Katajainen,
editors, Experimental Algorithms, Lecture Notes in Computer Science, pages
138–149, Cham, 2014. Springer International Publishing.

[10] Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast
and scalable minimal perfect hashing for massive key sets. arXiv:1702.03154
[cs], February 2017. arXiv: 1702.03154.

[11] Graham Cormode and S. Muthukrishnan. Summarizing and mining skewed data
streams. pages 44–55, 2005. 5th SIAM International Conference on Data Mining,
SDM 2005 ; Conference date: 21-04-2005 Through 23-04-2005.

2

Abstract
Phylo k-mers: constructing
phylogenetically-informed k-mers for
phylogenetic placement and recombination
detection
Nikolai Romashchenko1*, Benjamin Linard1,2, Fabio Pardi1, Eric Rivals1

1LIRMM, University of Montpellier, CNRS, Montpellier, France
2SPYGEN, 17 Rue du Lac Saint-André, 73370 Le Bourget-du-Lac, France
Corresponding author: *nromashchenko@lirmm.fr

Abstract
Multiple sequence alignment is an essential preliminary step for a large number of
different algorithms in bioinformatics. With the decrease of the sequencing cost, the
need to process more and more data increases, making alignment-based approaches
computationally expensive in practice. This led to the emergence of many alignment-
free algorithms and the widespread adoption of k-mer based approaches.

We describe phylogenetically-informed k-mers, or phylo k-mers, a concept re-
cently introduced in the context of phylogenetic placement in metagenomics [1],
and successfully applied for viral recombination detection [2]. A phylo k-mer is a
k-mer that is present with a non-negligible probability in unknown relatives of the
sequences contained in an alignment. While the calculation of these probabilities is
computationally heavy and requires the reference alignment as an input, it has to
be done only once per alignment. Once calculated, phylo k-mers can be applied in
alignment-free algorithms that require a massive input of new query sequences: in
RAPPAS [1] for phylogenetic placement, and SHERPAS [2] for viral recombination
detection.

We discuss methods of calculation, or construction of phylo k-mers, and present
xpas, the phylo k-mer construction library. It allows for fast and memory-efficient
construction of databases of phylo k-mers. Those databases are used by SHERPAS
and the new version of RAPPAS, which is currently under development.

Keywords: alignment-free, phylogenetics, k-mers, phylo k-mers, recombination

References
[1] Benjamin Linard, Krister Swenson, and Fabio Pardi. Rapid alignment-free

phylogenetic identification of metagenomic sequences. Bioinformatics, 35, 01
2019.

1

Applications of phylo k-mers

[2] Guillaume E. Scholz, Benjamin Linard, Nikolai Romashchenko, Eric Rivals, and
Fabio Pardi. Rapid screening and detection of inter-type viral recombinants using
phylo-k-mers. bioRxiv, 2020.

2

Extended abstract
Correcting Long-Reads with k-mers: A
Dream Comes True
Pierre Marijon1 , Philipp Spohr2  Antoine Limasset3 ,
1Heinrich Heine University Düsseldorf Medical Faculty Institute for Medical Biometry and
Bioinformatics
2Heinrich Heine University Düsseldorf, Algorithmic Bioinformatics
3Univ. Lille, CNRS, UMR 9189 - CRIStAL, F-59000 Lille
*Corresponding author: pierre.marijon@hhu.de

Abstract
Long-read sequencing technologies have become widespread for a broad application range. Never-
theless, they still have a high error rate. The correction of such reads is usually time and memory
expensive due to the pairwise alignment step. However, previous techniques based on k-mer spec-
trum analysis performed very well on short-reads and even on long-reads given the availability of
short-read sequences. Those techniques were able to be extremely fast and lightweight, relying on
a very efficient data structure.
In this presentation, we present two ongoing works showing that such techniques can be adapted
to work on noisy long reads directly without relying on precise short read data: PanCov-Correct
corrects Nanopore reads while keeping low-covered variants, in heterozygous context. Pcon & Br
performs long-read self-correction. These two correction methods reach an error-rate of around
0.1%, faster than other self-correction methods.

Keywords
long-read — correction — variant calling

1. Introduction
Third-generation DNA sequencing is increasingly becoming a standard technology
for reference genome construction (de novo assembly), detection of structural vari-
ants, long-range variant phasing, and sequencing of GC-rich regions with accurate
coverage. However, their higher error rate, which can exceed 10%, and complex
error profiles presenting substitutions, deletions, and insertions lead to algorithmic
challenges.

Most correction tools use pairwise alignment beforehand to perform the long-read
correction. This step is usually the bottleneck in terms of time and memory of most
pipelines. We will present preliminary results of two new correction methods based
on k-mers from long-reads during this talk. PanCov-Correct that corrects reads
from COVID-19 while preserving low-covered variants. Pcon and Br that adapt the
well known k-mer spectrum correction to the long-reads error distribution.

2. Materials & Methods

1

https://orcid.org/0000-0002-6694-6873
https://orcid.org/0000-0002-6039-377X
https://orcid.org/0000-0002-0669-4141

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 1. We apply this decision flow to select reads k-mers in the PanCov-Correct
method i) We only consider k-mers that verify
min

(
forwardCount

totalCount , reverseCount
totalCount

)
> 0.3 ii) A k-mer is ignored if its total count is

lower than 10 (min threshold) and accepted if upper than 50 (max threshold) iii)
For a medium total coverage: we estimate the local coverage of the considered
k-mer and accept the k-mer if kmerCoverage× 0.7 > estimateLocalCoverage. All
threshold are chosen empirically.

2.1 PanCov-Correct
This correction method is part of a larger pipeline PanCov (publication in prepara-
tion), whose goal is to call variants in COVID-19 samples sequenced with Nanopore
technology.

The current state-of-the-art method to call variants of COVID-19 based on
Nanopore sequencing, proposed by the ARTIC network 1, can be roughly summa-
rized as (i) reverse transcription from RNA to DNA, (ii) viral genome amplification
or enrichment, (iii) generation of the sequencing data (iv) run Nanopolish [1] and
Medaka2 on this data to produce a consensus sequence and variant calling. This
pipeline detects the most abundant viral alleles present in each patient, but exhibits
reduced sensitivity for alleles present at lower frequencies and often fails to detect
mixed strands in samples.

The sequencing pipeline produces Nanopore reads with a 300 base pairs length,
9% error rate 300x of coverage (with some region’s coverage as low as 20x), and some
strand bias. Our goal is to provide a correction tool that removes the majority of
sequencing errors as well as the strand bias while keeping variants with a low allele
frequency.

The correction performed by PanCov-Correct is based on GraphAligner’s[2]
hybrid correction method. GraphAligner runs bcalm [3] on short-reads to build a
DeBruijn graph, maps long-reads on this graph, and uses graph information as a
ground truth to correct long-reads; this method helps preserving variants if they are

1https://artic.network/
2https://github.com/nanoporetech/medaka

2

https://artic.network/
https://github.com/nanoporetech/medaka

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 2. We can see erroneous k-mers generally have a low abundance, the
majority of reference k-mers have an abundance of around 40 for this dataset. By
replacing low abundance k-mers with high abundant ones we correct the errors.

present in the DeBruijn graph.
To replace k-mers from short-reads, we use the reference k-mers, and additional k-

mers from Nanopore reads. After a count of k-mers in both strand (with jellyfish
[4]) we select a subset with the decision tree presented in Figure 1.

The first filter removes erroneous k-mers due to strand bias, and the two other
filters erroneous k-mers while keeping k-mers in low coverage regions.

With all accepted k-mers, as well as the k-mers from the reference, we build a
DeBruijn graph with bcalm and use GraphAligner to correct reads. We execute
this pipeline iteratively with an increasing value for the k-mer size.

2.2 Pcon & Br
Pcon & Br correction method is based on the k-mer spectrum and the idea that
erroneous k-mers are observed less frequently than correct k-mers in the dataset.
Figure 2 shows a k-mer spectrum with reference and erroneous k-mers in 50x E. coli
Nanopore R10.3 with an error rate of around 5%. We can see that most erroneous
k-mers have low coverage.

With Pcon and Br, we try to apply this method to long-reads. Pcon is a k-mer
counter designed to count short k-mers quickly. Br scans reads and tries to replace
low count k-mers, designated as weak, by k-mers with high coverage, design now as
solid, as Musket[5] and Lighter[6].

2.2.1 Pcon
Pcon is based on a simple reversible hash function that maps all possible canonical
k-mer to the range between 0 to 2(2×k)−1. By allocating a table of size 2(2×k)−1 Pcon
can store the counts of all possible canonical k-mers.

Each k-mer exists in two versions, forward and reverse, that are considered indis-
tinguishable. Therefore, to reduce memory usage, we store only one version of each
k-mer. The chosen form is dubbed canonical. Most of the time, the smallest integer

3

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 3. We present the mean error rate of each sample as a violin plot, for the raw
reads and after each correction round. The first round with k=11 divides the error
rate by more than 10 and further iterations allow the reads to reach an average
error of 0.24%. The correction method also reduces the variance of mean error.

value is chosen as the canonical. The Pcon hash function is designed to avoid the
computation of two versions to get the canonical one.

First, we define a function popcount, which returns the number of bits equal
to 1 in a k-mer binary representation. The hash function converts the nucleotides
of a k-mer in a two bits representation following this encoding: A ← 00, C ← 01,
G ← 11 and T ← 10. This encoding’s main property is that, given that the k-mer
length is odd, popcount(forward) is odd iff popcount(reverse) is even. Thus, we
define the canonical version of a k-mer as the one with even popcount. This property
helps to determine the canonical k-mer without computing its reverse complement.
Moreover, if we work only with canonical k-mers, we can remove one bit for each
k-mer and reconstruct this bit by adding a one or a zero to get an even popcount.

Pcon can convert its count in a bitfield. If a k-mer count is larger than a threshold,
the bit corresponding to the k-mer value is set to 1 else to 0.

Pcon can write its result in different formats: pcon (a gzip-compressed dump of
the count table), CSV, solid (a gzip-compressed dump of bitfield), and it can also
produce a k-mer spectrum. Pcon is usable as a standalone tool and as a Rust library
with C and Python bindings.

2.2.2 Br
Br screens the read sequence uses Pcon’s solid bitfield to know if each k-mer is
solid or not. When Br detects a weak k-mer, it can apply four different algorithms
to correct the faulty nucleotides. Here we describe those four algorithms dubbed:
One, GapLength, Graph, and Greedy.

One This algorithm is the simplest one. It supposes that a single isolated error
produced the weak k-mer. This type of error generates a succession of k weak k-
mers. This algorithm tries to replace the last base of the first weak k-mer to convert
it in solid k-mer. This base is considered the correct one. If the N following k-mers
are solid with this correction, Br validates this correction. If two or more corrections
are possible, Br does not try to correct this error.

Graph This algorithm assumes an error generates a succession of weak k-mers bor-
dered by two solid k-mers. Graph algorithm considers the set of solid k-mers as

4

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 4. We present the discovered variants with Nanopore reads compared
between different methods, freebayes corresponds to freebayes on the corrected
read, nanopolish and medaka correspond to variants called by the ARTIC network
pipeline. We observe that the amount of variant discovered exclusively by freebayes
(first bar) is comparable to the amount of variant discovered by all tools (last bar)

a DeBruijn graph and searches a simple path between the two border solid k-mers.
Graph starts from the last solid k-mer before the error and progresses in the De-
Bruijn graph, if we reach the first solid k-mer after error, we replace the erroneous
section of the read by the simple path. If we reach a fork, a dead-end, or a cycle
during DeBruijn graph exploration, Br does not apply any correction.

GapLength Inspired by MindTheGap [7], the length of weak k-mers allows the deter-
mination of the error type:

• If length < k, it is a deletion

• If length == k, it is an error generated by a single nucleotide change

• If length > k, it is a substitution or insertion with length equal to the number
of weak k-mers minus size of k-mer

In practice, we apply the Graph algorithm for deletion and the One algorithm
for isolated errors. For the last case, we can determine the number of k-mers required
to replace the last erroneous base. We apply a very similar algorithm as Graph,
but we can stop the graph exploration earlier.

Greedy Contrary to Graph and GapLength, Greedy does not try to analyze the
errors to correct them but directly tries to replace the erroneous sequence by a path
in the DeBruijn. This algorithm explores the DeBruijn graph and tries to find when
the graph path matches the read sequence.

3. Result
3.1 PanCov-correct
To evaluate the PanCov-Correct method, we run it iteratively with a k-mer size
ranging from 11 to 19 and a step size of 2. We evaluate the error rate by mapping

5

Correcting Long-Reads with k-mers: A Dream Comes True

Dataset Organisme Technology Error rate Coverage
bacteria E. coli Nanopore R10.0 14.7% ≈ 127x
bacteria5 E. coli Nanopore R10.3 5.9% ≈ 54x
bacteria7 E. coli Nanopore R10.3 7.7% ≈ 127x
celegans C. elegans Badreads 5 % 16x, 20x, 50x to 400x per 50x step
metagenome metagenome3 Nanopore R10.3 10.8%
synthetic E. coli Badreads 1% to 10% per 1% step ≈ 50x
yeast C. elegans Nanopore R10.3 5 % ≈ 283x

Table 1. Main characteristic of the data sets used to evaluate Pcon & Br against
other tools.

reads against the reference with minimap2 and compute the mean error rate with
samtools stats. The result is presented in Figure 3. By correcting reads with k
equals 11, we reduce the error rate by ten. Another iteration improves read quality,
just above 0.2% of error. We start with a k-mer size equal to 11 because most
DeBruijn graphs built from reads are composed of one connected component with
this k-mer size.

To evaluate the effect of correction on downstream analysis, we call variants on
the corrected reads with freebayes. We compare the set of variants found in any
dataset between freebayes, nanopolish and medaka. The result is presented in
Figure 4. We can notice an important number of variants common with all variant
callers, but half of the variants found by freebayes on the corrected reads are found
exclusively by freebayes.

This comparison is not straightforward because we compare variant calling on
raw reads and corrected reads. Moreover, we did not have a ground truth like manual
curation or variant calling with second-generation reads to evaluate if the variants
found only by freebayes are genuine variants. However, we plan to do this analysis
in the future.

3.2 Pcon & Br
To evaluate Pcon & Br, we use some real and synthetic datasets. A resume of the
main properties of those datasets are present in Table 1

To evaluate Pcon’s performance we compare wall clock time and memory usage
against two other tools jellyfish [4] and kmc [8] (in ram mode), on metagenomic
dataset reads. The results are presented in Figure 5. We observe that Pcon is the
tool that has the best wall clock computation and memory usage (except for k = 19.

To evaluate Br’s performance we computing the error rate with the same method
used previously on PanCov-Correct and compare our results with other self-correction
tools: CONSENT [9], NECAT [10] and Canu [11] correction module. Results on our
dataset are shown in Figure 6.

We observe that the runtime of Br grows slower than that of other tools. Br
memory usage with k = 19 is large (140 Gb), but constant. The initial error rate
impacts the corrected error rate for all tools, but this impact is larger for Br. On
bacterial datasets with relatively small error rates, around 6%, Br performs similarly
to other tools. Nevertheless, on more complex datasets like yeast and C. elegans, Br
] has room for improvement.

6

Correcting Long-Reads with k-mers: A Dream Comes True

Figure 5. Comparison of Pcon computation time and memory usage (in purple)
against different k-mers counter on different k-mer size.

Figure 6. Runtime, memory usage and error rate, of Br, CONSENT, NECAT and Canu
each point corresponds to a dataset. Canu, CONSENT and NECAT didn’t finish in less
than 9 hour on all dataset. The black line correspond to identity between original
and corrected error rate.

7

Correcting Long-Reads with k-mers: A Dream Comes True

4. Conclusion
PanCov-Correct produces good results in terms of correction quality, and down-
stream analysis allows the discovery of new variants in the COVID-19 sample. We
plan to create a standalone tool with a similar method to apply it easily to other
organisms.

Pcon for its specific target, k-mers with an abundance lower than 20, is faster than
other k-mer counters. Preliminary results show that Br performs good correction
faster than other tools, and recent improvement of raw long-read quality could help
Br to perform a better correction. Another improvement could be to use another
set structure than the one provided by Pcon, to reduce the memory impact and use
larger k-mer.

These results on two different correction methods demonstrate that k-mer-based
correction can be applied to long-read sequences. Our ongoing focus is to improve
correction quality, but our first and naive approaches show those strategies’ poten-
tial.

Acknowledgement
The Centre for Information and Media Technology at Heinrich Heine University
Düsseldorf provided computational infrastructure and support.

References
[1] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacte-

rial genome assembled de novo using only nanopore sequencing data. Nature
Methods, 12(8):733–735, jun 2015.

[2] Mikko Rautiainen and Tobias Marschall. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biology, 21(1), sep 2020.

[3] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting de bruijn
graphs from sequencing data quickly and in low memory. Bioinformatics,
32(12):i201–i208, jun 2016.

[4] Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, jan
2011.

[5] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-
mer spectrum-based error corrector for illumina sequence data. Bioinformatics,
29(3):308–315, nov 2012.

[6] Li Song, Liliana Florea, and Ben Langmead. Lighter: fast and memory-efficient
sequencing error correction without counting. Genome Biology, 15(11), nov
2014.

[7] G. Rizk, A. Gouin, R. Chikhi, and C. Lemaitre. MindTheGap: integrated de-
tection and assembly of short and long insertions. Bioinformatics, 30(24):3451–
3457, aug 2014.

[8] Marek Kokot, Maciej Długosz, and Sebastian Deorowicz. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics, 33(17):2759–2761, may 2017.

8

Correcting Long-Reads with k-mers: A Dream Comes True

[9] Pierre Morisse, Camille Marchet, Antoine Limasset, Thierry Lecroq, and Ar-
naud Lefebvre. CONSENT: Scalable long read self-correction and assembly
polishing with multiple sequence alignment. feb 2019.

[10] Chuan-Le Xiao, Ying Chen, Shang-Qian Xie, Kai-Ning Chen, Yan Wang,
Yue Han, Feng Luo, and Zhi Xie. MECAT: fast mapping, error correction,
and de novo assembly for single-molecule sequencing reads. Nature Methods,
14(11):1072–1074, sep 2017.

[11] Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read as-
sembly via adaptivek-mer weighting and repeat separation. Genome Research,
27(5):722–736, mar 2017.

9

Abstract
srnaMapper: an optimal mapping tool for
sRNA-Seq reads
Matthias Zytnicki *, Christine Gaspin

Unité de Mathématiques et Informatique Appliquées, INRAE, France
*Corresponding author: matthias.zytnicki@inrae.fr

Abstract
Motivation Sequencing is the key method to study the impact of short RNAs, which
include micro RNAs, tRNA-derived RNAs, and piwi-interacting RNA, among other.
The first step to make use of these reads is to map them to a genome. Existing
mapping tools have been developed for the long RNAs in mind, and, so far, no tool
has been conceived for short RNAs. However, short RNAs have several distinctive
features which make them different from messenger RNAs: they are shorter (not
greater than 200bp), they often redundant, they can be produced by duplicated loci,
and they may be edited at their ends.

Results In this work, we present a new tool, srnaMapper, that maps these reads
with all these objectives in mind. We show on two data sets that srnaMapper is
more efficient considering computation time and edition error handling: it quickly
retrieves all the hits, with arbitrary number of errors.

Availability srnaMapper source code is available at https://github.com/mzytnicki/srnaMapper.

1. Introduction
Eukaryotic small RNAs (sRNAs) are defined as <200-bp long, usually untranslated,
RNAs. They have been shown to participate in many aspects of cell life [1, 2].

They are generally classified according to their specific size range, biogenesis,
and functional pathway. Among them, microRNAs (miRNAs) are certainly the
most studied, but many other small RNAs have been shown to have a key role in
regulation: tRNA-derived small RNAs (tsRNAs), small interfering RNAs (siRNAs),
piwi-associated RNAs (piRNAs) and repeat-associated siRNAs (rasiRNAs), to name
a few.

After the sequencing, the first task is usually to map the reads to the genome,
i.e. predict the putative loci which may have produced the reads. Many mapping
tools have been created so far, but none has been developed especially for sRNAs.
User then resort to DNA mapping tools such as bowtie [1], bowtie2 [2], or bwa [3],
with tuned parameters. Downstream tools may then be applied to filter the results.

Here, we present a new tool for efficiently mapping sRNA reads. It addresses all
the particularities of these reads efficiently.

First, sRNA-producing loci are often duplicated: miRNAs are sometimes grouped
into families, which generate highly similar or identical RNAs, and piRNAs are

1

https://github.com/mzytnicki/srnaMapper

srnaMapper

produced in interaction with transposable elements, which are known to be duplicated.
Our tools provides all the hits (up to user given threshold) for each read.

Second, some sRNAs, such as miRNAs, undergo editing at their ends. Both the 5’
or the 3’ can be shrinked, extended with a template, or both. Contrary to other tools,
such as bwa or bowtie, we did not set any “seed” at the ends of the reads. Moreover,
the tool requires a maximum number of errors (which can be mismatches or indels),
and not a percentage, since the editing is, as far as we know, not dependent of the
size of the read.

Third, sRNAs are short, usually <30bp long, and their are highly redundant (the
same sRNA may be sequenced thousands times). As a result, we can store all the
reads in a tree, which fits into memory, and substantially accelerate the mapping
process, since the same sRNA is mapped only once, even though it is sequenced
several times.

Last, our experience in sRNA-Seq showed us that the users usually want all the
hits that map with the lowest number of errors. These feature is usually implemented
with the option --best --strata in bowtie1, but is not available in every mapping
tool.

2. Methods
First, a method based on q-gram filtering cannot used here, since 21bp long miRNAs,
with 2 errors, should be split into q-grams that are too short to be useful.

In our implementation, the genome is indexed using the bwa suite, which creates
a suffix array, together with the BW transform and the FM index. Since we will
manipulate this structure like a tree, for the clarity of the discussion, we will refer to
this structure as the genome tree, even though it is, stricto sensu, an array. The tools
then stores the reads into a radix tree, where each path from the root to a terminal
node stores a sequence. The number of reads for the corresponding sequence, as well
as the read quality, is also stored into the terminal node.

Given a threshold k and a terminal node in the reads tree, the aim is then to find
all the nodes in the genome tree with the minimal edit distance, not greater than k
(when they exist). If k = 0, the problem reduces to finding the common sub-tree of
the genome tree and the reads tree. If k > 1, the problem could be described as an
“approximate” sub-tree search. To the best of our knowledge, the latter problem has
never been described so far.

To map the reads, we first map the reads root node to the genome tree with at
most k errors. We thus have a list of corresponding genome nodes. Then, we add a
nucleotide from the reads tree: we try the new corresponding genome nodes using
the previously computed list. We recursively traverse the reads tree this way to find
all the matching genome nodes, and report the results when we find a terminal node.

We implemented several optimizations. First, we do not store one genome tree,
but 48 trees, which start with all the 8-mers. This saves time and space, since, in
our data, virtually all the 8-mers were seen in the first 8bp of the reads. Second,
we first try to map a read with 0 error. If it fails, the search is backtracked to the
last point where a mapping with 1 error was done, etc. Third, almost the search
(except loading the genome tree) can performed in parallel. Fourth, several fastq files

2

srnaMapper

can be given to the tool, and they will be mapped simultaneously. We tried other
optimizations, but they did not given significant improvements.

3. Results
We compared our approach with several different tools. First, we use the widely
used tool bowtie [1], bowtie2 [2], and bwa [3], with the parameters suggested by
the review [4]. We also tried several “all mapper”, such as Yara [5], which are tools
designed to quickly retrieve all hits. Note that Yara does not make it possible to
specify a fixed edit distance. Instead, the user can specify an error rate, which is the
percentage of errors, given the read size. We choose an error rate of 10 (which is
two errors at most for a read or size 20), and discarded reads with more that 2 erros.
Other all mappers, such as FEM [6], Hobbes [7], and BitMapper2 [8], could not be
used, because the reads were too short for an edit distance of 2.

Results on the two datasets show that srnaMapper mapps all the reads that the
other map (Fig. 1), and maps several reads that other do not (see Supplementary
Data). It also can map read with fewer errors, and find more loci per read. Time-wise,
srnaMapper is slower than methods that map significantly less reads, but comparable
with the tools that map almost the same number of reads.

We believe that srnaMapper could be the tool of choice for mapping short-RNA
reads, since it maps more reads, at more locations, with a modest time difference
when compared to other best tools.

References
[1] B Langmead, C Trapnell, M Pop, and S Salzberg. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol, 10:R25,
2009.

[2] B Langmead and S Salzberg. Fast gapped-read alignment with Bowtie 2. Nat
Methods, 9:357–359, 2012.

[3] Heng Li and Richard Durbin. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[4] M Ziemann, A Kaspi, and A El-Osta. Evaluation of microRNA alignment
techniques. RNA, 22:1120–1138, 2016.

[5] Enrico Siragusa, David Weese, and Knut Reinert. Fast and accurate read mapping
with approximate seeds and multiple backtracking. Nucleic Acids Research,
41(7):e78–e78, 2013.

[6] Haowen Zhang, Yuandong Chan, Kaichao Fan, Bertil Schmidt, and Weiguo Liu.
Fast and efficient short read mapping based on a succinct hash index. BMC
Bioinformatics, 19:92, 2018.

[7] Athena Ahmadi, Alexander Behm, Nagesh Honnalli, Chen Li, Lingjie Weng, and
Xiaohui Xie. Hobbes: optimized gram-based methods for efficient read alignment.
Nucleic Acids Research, 40:e41, 2011.

3

srnaMapper

Figure 1. Number of reads mapped.

4

srnaMapper

Figure 2. Time (in seconds) needed to map the reads. The y-axis is in log scale.

[8] H. Cheng, Y. Zhang, and Y. Xu. Bitmapper2: A gpu-accelerated all-mapper
based on the sparse q-gram index. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(3):886–897, 2019.

5

Abstract
Efficient enumeration of regex matches
Antoine Amarilli

LTCI, Télécom Paris, Institut Polytechnique de Paris

Abstract
Database theory research has recently studied the task of declarative information
extraction, i.e., extracting structured information by searching for relevant patterns
in unstructured textual documents. This was initially motivated by IBM’s SystemT
tool [1]. The task is formalized using so-called regex-formulas, which are regular
expressions with capture variables. For instance, if we have text containing names and
email addresses of the form “John Doe <john.doe@example.com>”, the following
regex formula applied to the text will extract all pairs (x, y) of a name (mapped to
variable x) and its corresponding email address (mapped to variable y):

x{[A-Z][a-z]* [A-Z][a-z]*} <y{[a-z.]+@[a-z.]+}>

Recent research on this topic has studied how to efficiently perform this extraction
task: given a regex formula φ with variables X and a textual document D, find all
possible assignments of the variables X to spans (i.e., intervals of positions) of D
such that φ is satisfied. As the number of results may be huge, we are looking for an
enumeration algorithm [2], which produces results one after the other in an anytime
fashion. Specifically, we measure the preprocessing time before the first answer is
found, and then measure the delay between any two successive answers.

The proposed talk will present this research area, recent results, and ongoing
research directions. It will focus on our recent work with Pierre Bourhis, Stefan
Mengel, and Matthias Niewerth, published at ICDT’19 [3] and distinguished at
SIGMOD Research Highlights1. In this work, we showed that the matches of a
regex-formula in a textual document can be enumerated with linear preprocessing in
the input document and constant delay between each answer, with the complexity in
the regex-formula being polynomial. Our work is supported by an implementation2

which is benchmarked in our upcoming journal article [4].
The goal is to explore how these methods could relate to those of the SeqBIM

community and identify use cases, e.g., efficiently locating patterns in genomic data.

References
[1] IBM Research. SystemT, 2018.
[2] Kunihiro Wasa. Enumeration of enumeration algorithms. CoRR, abs/1605.05102, 2016.
[3] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. In ICDT, 2019.
[4] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. Under review, 2020.

1
https://sigmodrecord.org/2020/07/31/constant-delay-enumeration-for-nondeterministic-document-spanners/

2
https://github.com/PoDMR/enum-spanner-rs

1

https://researcher.watson.ibm.com/researcher/view_group.php?id=1264
https://arxiv.org/abs/1605.05102
https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/2003.02576
https://arxiv.org/abs/2003.02576
https://sigmodrecord.org/2020/07/31/constant-delay-enumeration-for-nondeterministic-document-spanners/
https://github.com/PoDMR/enum-spanner-rs

Hide and Mine in Strings: Hardness and Algorithms
Giulia Bernardini1, Alessio Conte2, Garance Gourdel3, Roberto Grossi2,4, Grigorios Loukides5

Nadia Pisanti2,4, Solon P. Pissis4,6,7, Giulia Punzi2, Leen Stougie4,6,7, Michelle Sweering6

1University of Milano - Bicocca, Italy
2Università di Pisa, Italy

3Inria Rennes, École normale supérieure, ENS Paris-Saclay, France
4ERABLE Team, France

5King’s College London, United Kingdom
6CWI, The Netherlands

7Vrije Universiteit, The Netherlands
1giulia.bernardini@unimib.it, 2{alessio.conte,roberto.grossi,nadia.pisanti}@unipi.it, giulia.punzi@phd.unipi.it

3garance.gourdel@ens-paris-saclay.fr, 5grigorios.loukides@kcl.ac.uk, 6{solon.pissis,leen.stougie,michelle.sweering}@cwi.nl

Abstract—We initiate a study on the fundamental relation
between data sanitization (i.e., the process of hiding confidential
information in a given dataset) and frequent pattern mining, in
the context of sequential (string) data. Current methods for string
sanitization hide confidential patterns introducing, however, a
number of spurious patterns that may harm the utility of
frequent pattern mining. The main computational problem is
to minimize this harm. Our contribution here is twofold. First,
we present several hardness results, for different variants of this
problem, essentially showing that these variants cannot be solved
or even be approximated in polynomial time. Second, we propose
integer linear programming formulations for these variants and
algorithms to solve them, which work in polynomial time under
certain realistic assumptions on the problem parameters.

Index Terms—data privacy, data sanitization, knowledge hid-
ing, frequent pattern mining, string algorithms

I. INTRODUCTION

A string is a sequence of letters over some alphabet Σ.
Strings are commonly used to represent individuals’ data in
domains ranging from transportation to web analytics and
bioinformatics. For example, a string can represent a user’s
location profile, with each letter corresponding to a visited
location [28], a user’s purchasing history, with each letter cor-
responding to a purchased product [2], or a patient’s genome
sequence, with each letter corresponding to a DNA base [20].
Mining patterns from such strings is thus useful in a gamut of
applications, including route planning [8], marketing [2], and
clinical diagnostics [20]. To support these applications while
preserving privacy, strings representing individuals’ data are
often being disseminated after sanitization [1], [27].

In this paper, we study the fundamental relation between
data sanitization [1], [4], [27] (also known as knowledge
hiding) and frequent pattern mining [19], [22], [25]. The
objective of frequent pattern mining in strings is to obtain
all patterns occurring frequently enough in a string, or in
a collection of strings. There may also be constraints for
the mined strings (e.g., to be of fixed length k [3], [9]).
In string sanitization, the privacy objective is to transform a
string to ensure that a given set of sensitive patterns, modeling
confidential knowledge, does not occur in the sanitized version

of the string; sensitive patterns are selected based on domain
expertise [4], [15], [27]. This transformation may incur some
utility loss that should be minimized. Recent methods achieve
this using combinatorial algorithms [4], [5]. Let W be the
input string over Σ, k > 0 be an integer, and S be the set of
sensitive length-k substrings. These methods construct a string
X such that: (I) X contains no element of S as a substring;
(II) the total order and thus the frequency of all non-sensitive
length-k substrings of W is preserved in X; and (III) the
length of X is minimized [4], or the edit distance between
W and X is minimized [5]. These methods work by copying
carefully selected substrings of W into X and separating them
by a special letter # /∈ Σ.

Example 1. Let W = GACAAAAACCCAT, k = 3, and the
set of sensitive patterns S = {ACA,CAA,AAA,AAC,CCA}.
Further, let XTR = GAC#ACC#CCC#CAT, XMIN =
GACCC#CAT and XED = GAC#AA#ACCC#CAT be three
sanitized strings. All three strings contain no sensitive pattern
and preserve the total order and thus the frequency of all non-
sensitive length-3 patterns of W : XTR is the trivial solution
of interleaving the non-sensitive length-3 patterns of W with
#; XMIN is the shortest possible such string [4]; and XED is
a string closest to W in terms of edit distance [5].

Unfortunately, as noted in [4], the occurrences of # reveal
the locations of sensitive patterns and thus must be ultimately
replaced by letters of the original alphabet Σ. This replacement
gives rise to another string over Σ, which we denote by Z.
However, this replacement may create spurious patterns that
could not be mined from X at a minimum frequency threshold
τ but would be mined from Z at the same frequency threshold.
These patterns are referred to as τ -ghosts.

We investigate the crucial interplay between # replacements
and τ -ghosts, posing here the following question that, to the
best of our knowledge, has not been addressed: Given a
string X containing #’s, a positive integer k, and a positive
integer τ , how should we replace the #’s in X with letters in
Σ, so that the number of length-k τ -ghosts in the resulting
string Z is minimized? This question helps preserving the

1

accuracy of frequent pattern mining and tasks based on it (e.g.,
pattern-based clustering [17] and classification [24], as well as
sequential rule mining [26]) that we may not know a priori.

The above question is also of quite general interest, as it
applies to sequential datasets that may have occurrences of a
special letter for a variety of reasons beyond data sanitization.
This special letter, denoted here by # for consistency, rep-
resents some information that is missing from these datasets.
For instance, in genome sequencing data, # corresponds to
an unknown DNA base [18]; in databases, # represents a
value that has not been recorded [7], [12]; and in masked
data outputted by other privacy-preserving methods [6], # is
introduced deliberately to achieve their privacy goal.

Like in data outputted by sanitization methods, the oc-
currences of # in other string datasets often have to be
replaced. For example, since the DNA alphabet consists of four
letters (A, C, G, and T), off-the-shelf algorithms for processing
DNA data use a two-bits-per-base encoding to represent the
DNA alphabet. In order to use these algorithms with input
strings containing unknown bases, we would have to amend
them to work on the extended alphabet {A,C,G,T,#}. This
solution may have a negative impact on the time efficiency of
the algorithms or the space efficiency of the data structures
they use. Thus, instead, in several state-of-the-art DNA data
processing tools (e.g., [21]), the occurrences of # are replaced
by an arbitrarily chosen letter from the DNA alphabet, so
that off-the-shelf algorithms can be directly employed. This,
however, may introduce a large number of spurious patterns,
negatively affecting the accuracy of DNA analyses.

Replacing the occurrences of # in a database is often
needed to be able to perform frequent pattern mining with off-
the-shelf algorithms [12]. To this end, the occurrences of # are
commonly replaced by some statistical estimate, such as the
most frequent value [12], [16]. However, such a replacement
does not generally maintain the accuracy of frequent pattern
mining, since it may introduce many spurious patterns [12].

Example 2. Let again W =GACAAAAACCCAT, k = 3, and
S = {ACA,CAA,AAA,AAC,CCA}. Further, let the frequency
threshold be τ = 2. Note that the frequency of all non-sensitive
length-3 patterns in W is preserved in all three sanitized strings
XTR = GAC#ACC#CCC#CAT, XMIN = GACCC#CAT, and
XED = GAC#AA#ACCC#CAT. Replacing, however, all #’s
with G would create τ -ghost GAC both in XTR and in XED.

Contributions. To our knowledge, there does not exist a
general solution to the question we pose here that simultane-
ously guarantees effectiveness and efficiency. In this work, we
provide compelling evidence as to why this is the case. Within
the string sanitization context, we also provide algorithms for
answering this question. Specifically:
1) We embark on a theoretical study to understand the relation
between replacing #’s and creating τ -ghosts. In particular, we
define the following problems and examine their hardness:
• HMD (Hide and Mine decision): This is the core decision

version of the problem asking whether or not we can
replace all #’s in X , so that no sensitive pattern and

no τ -ghost occurs in Z. Deciding this may allow for
sanitizing X with no utility loss in frequent pattern
mining. We show that HMD is strongly NP-complete
via a reduction from a variant of the well-known Bin
Packing problem [14] (see Section III). This is the most
technically involved part of the paper, as the provided
reduction is highly non-trivial.

• HM (Hide and Mine): This is the optimization version of
HMD asking how we can replace all #’s, while ensuring
that no sensitive patterns and a minimal number of τ -
ghosts occur in Z. This would minimize the utility loss
in frequent pattern mining. HM is clearly NP-hard as a
consequence of HMD being NP-complete, but we also
show that it is hard to approximate.

• HMMT (Hide and Mine minimum threshold): Given a pa-
rameter τ , this problem asks for the minimum frequency
threshold τ1 ≥ τ for which no sensitive pattern and no τ1-
ghost occurs in Z. Solving HMMT would imply no utility
loss in frequent pattern mining at a higher frequency
threshold τ1 that is as close as possible to τ . We show
that HMMT is (NP-hard and) hard to approximate.

The hardness (see Section III) and inapproximabilty (see
Section IV) results for our problems provide solid evidence for
the lack of polynomial-time exact or approximation algorithms
for these problems and motivate our next contribution.
2) We develop exact algorithms for HMD and HM (see
Section V) that require polynomial time, under certain realistic
assumptions on the problem parameters:
• Exact algorithms based on an Integer Linear Program-

ming (ILP) formulation of HMD. The main idea is to
identify all length-k strings over Σ in X that may po-
tentially become τ -ghosts in Z, and then decide whether
each of the #’s can be replaced by a letter in Σ without
creating any sensitive pattern or any τ -ghost pattern in
Z. We prove that HMD is fixed-parameter tractable [11]
in most cases encountered in practice (e.g., when the
number of distinct letters in the string and the length k
of sensitive patterns are upper bounded by a constant).

• Exact algorithms based on an ILP formulation of HM.
This ILP formulation differs from the HMD formulation
in that it takes into account the number of τ -ghosts
created by replacing #’s, so as to minimize their number.
We prove that HM is fixed-parameter tractable in many
cases encountered in practice (e.g., when the length k of
sensitive patterns and the number of distinct patterns that
may become τ -ghosts are upper bounded by a constant).

II. PRELIMINARIES AND PROBLEM STATEMENT

An alphabet Σ is a finite nonempty set whose elements are
called letters. We also consider an alphabet Σ# = Σ ∪ {#},
where # is a special letter not in Σ. We fix a string X =
X[0] · · ·X[n − 1] of length |X| = n over Σ#. The set of
length-k strings over Σ is denoted by Σk. For two indices
0 ≤ i ≤ j < n, X[i . . j] = X[i] · · ·X[j] is the substring of X
that starts at position i and ends at position j of W . FreqX(U)
denotes the number of occurrences (starting positions) of string

2

U as a substring of X . A prefix of X is a substring of X of the
form X[0 . . j], and a suffix of X is a substring of X of the form
X[i . . n−1]. A dictionary over Σ is a set of strings over Σ. The
dictionary used in our work is a set of length-k strings that do
not occur in X; we refer to these strings as sensitive patterns.
Any element of Σk that is not in this dictionary is referred to
as a non-sensitive pattern. In combinatorics on words, such a
dictionary is known as antidictionary and the sensitive patterns
are known as forbidden patterns (e.g., see [10]).

Problem 1 (HIDE & MINE (HM)). Given an integer k > 0, a
string X = X0#X1# · · ·#Xδ of length n over an alphabet
Σ#, with |Xi| ≥ k− 1, for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ > 0,
compute a function g : [δ] → Σ such that the following hold
for string Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I The number of strings U ∈ Σk, with FreqX(U) < τ and
FreqZ(U) ≥ τ in Z, is minimized.

II No S ∈ S occurs in Z.

Note that function g replaces each # by exactly one letter
from Σ. Condition |Xi| ≥ k − 1 means that any two #’s in
X are at least k positions apart. Thus, any length-k substring
X[i . . i+k−1] of X is affected by at most one # replacement.
The sanitization method of [4, Lemma 1] produces an X
satisfying this condition, for any set S ⊆ Σk, to guarantee
that the frequency of every non-sensitive pattern is preserved
in X . Thus, HM is directly applicable to the output of [4].

A string U ∈ Σk with FreqX(U) < τ and FreqZ(U) ≥ τ is
referred to as τ -ghost. To prove NP-completeness, we consider
the decision variant HMD of HM, which asks to decide if there
exists any function g : [δ]→ Σ such that the following hold:

I No τ -ghost occurs in Z.
II No S ∈ S occurs in Z.

III. HMD IS NP-COMPLETE

Problem HMD is clearly in NP. In this section, we show it
to be strongly NP-complete via a reduction from a variant of
Bin Packing [14].

A. The UNIQUE-WEIGHTS BIN PACKING problem

The BIN PACKING (BP) problem is defined as follows.
Given three positive integers, M (number of bins), B (ca-
pacity of every bin), and N (number of items), and a vector
[w1, . . . , wN] of positive integers (the weights of the items),
BP asks whether we can partition the items into M subsets
(bins) without exceeding the capacity of any bin.

BP is strongly NP-complete [14], i.e., it is NP-complete
even when weights and bin capacities are bounded by a
polynomial function of N and M . We can thus use gadgets
whose size is proportional to the numerical values in the
instance IBP of BP, as if we were representing those numbers
in unary notation. To simplify the reduction, we assume there
are no items of weight 1 (they can be added at the end where
capacity is left), and that no two items have the same weight.
We refer to this variant as UNIQUE-WEIGHTS BIN PACKING

(UWBP). UWBP is also strongly NP-complete; we defer the
proof of this claim to the full version of the paper.

Lemma 1. UWBP is strongly NP-complete.

B. Overview of the Reduction from UWBP to HMD

For any UWBP instance, we construct in polynomial time
an instance of HMD that has positive answer if and only if
UWBP has positive answer. To this end, we will introduce
several gadgets which will serve to model the different con-
straints of UWBP. Each gadget consists of a string of length
2k − 1 over a specific alphabet: #, x, y, $, and a letter bi
for each i ∈ [M]. We will explain how all UWBP constraints
are linked to the gadgets. The gadget tij models whether item
j ∈ [N] is placed in bin i ∈ [M]:

tij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

bi . . . bi︸ ︷︷ ︸
k−1

The structure models the weight of items placed in bin i:
when we replace the # with bi, we introduce wj occurrences
of bki . The gadget uij , together with tij and the set of forbidden
patterns, ensures that each item is placed in some bin:

uij = bi x . . . x︸ ︷︷ ︸
k−wj−1

bi . . . bi︸ ︷︷ ︸
wj−1

y . . . y︸ ︷︷ ︸
wj

x . . . x︸ ︷︷ ︸
k−wj−2

y

We link the filling of the ith bin with the number of
occurrences of bki . To limit the other non-sensitive patterns
flexibly, we then choose a value τ high enough, and lower the
available occurrences of each pattern by adding extra copies
of them at the end. Namely, we have k = maxj wj + 3 and
τ = max{M,B}+ 1.

The final instance of HMD is the concatenation of the
following patterns separated by the string $$:

1) tij , ∀i, j.
2) uij , ∀i, j.
3) τ −B− 1 occurrences of bki , ∀i (allowed occurrences of

bki model the capacity of bin i).
4) τ − 2 occurrences of bixk−wj−1b

wj−1
i x, ∀i, j (only one

more occurrence of this pattern is allowed, and one is
created by replacing the # in tij or uij with x).

5) τ − M occurrences of ywj+1xk−wj−2y, ∀j (allowed
occurrences force us to replace at least one u·j with x
for each j, thus forcing us to use bij in the corresponding
tij gadget, i.e., placing each item in a bin).

The set S of sensitive patterns is carefully chosen to link
these gadgets, and consists of the union of the following sets:

1) {bi′bk−1
i | i, i′ ∈ [M], i′ 6= i}, which forbids putting a bi′

to replace the # in any tij , if i′ 6= i.
2) {biybk−2

i | i ∈ [M]}, which forbids putting a y to replace
the # in a tij .

3) {bi$bk−2
i | i ∈ [M]}, which forbids putting a $ to replace

the # in a tij .
4) {biywjxk−wj−2y | i ∈ [M], j ∈ [N]}, which forbids

putting any bi to replace the # in a uij .

3

5) {bi$ywjxk−wj−2 | i ∈ [M], j ∈ [N]}, which forbids
putting a $ to replace the # in a uij .

It can be shown that this instance of HMD has positive
answer if and only if the original UWBP does, thus proving
our claim. We defer the details to the full version of the paper.

Theorem 1. HMD is strongly NP-complete.

IV. HM IS HARD TO APPROXIMATE

Given the hardness of HMD, we now shift our focus on
checking whether an approximately optimal solution of HM
can be obtained instead. Given any instance IM of a minimiza-
tion problem M , an algorithm is called an α-approximation,
for some α ≥ 1, if it runs in polynomial time in the size of IM
and always outputs a solution value Γ ≤ α ·OPT, where OPT
denotes the optimal value for IM . We start with the following:

Theorem 2. There is no α-approximation algorithm for HM,
for any α ≥ 1, unless P=NP.

Proof. Suppose by contradiction that an α-approximation al-
gorithm A existed for minimizing the number of τ -ghosts in
HM. We could then use A to solve HMD: the answer to
HMD would be positive (i.e., there would exist a function
g that creates 0 τ -ghosts) if and only if the answer of A was
Γ = 0 ≤ α · OPT = 0, which contradicts Theorem 1.

The reader may now wonder whether the problem becomes
easier should one relax the requirement for a fixed threshold
τ . Thus, the following problem arises naturally.

Problem 2 (HMMT). Given an integer k > 0, a string
X = X0#X1# · · ·#Xδ of length n over alphabet Σ#, with
|Xi| ≥ k − 1 for all i ∈ [0, δ], a dictionary S ⊆ Σk

such that no S ∈ S occurs in X , and an integer τ0 > 0,
compute the smallest integer τ1 ≥ τ0 so that there exists a
function g : [δ] → Σ, such that the following hold for string
Z = X0g(1)X1g(2) · · · g(δ)Xδ:

I No U ∈ Σk, with FreqX(U) < τ1 and FreqZ(U) ≥ τ1
occurs in Z.

II No S ∈ S occurs in Z.

The practical rationale for considering HMMT is that it
could be useful if, for instance, τ1 is only slightly larger than τ
in a given HM instance. Unfortunately, we show that HMMT
is NP-hard, and it is even hard to approximate.

Theorem 3. HMMT is NP-hard.

Proof. We reduce HMD to HMMT as follows. Let IHMD be the
instance of HMD we would like to solve for some threshold
τ . We construct an instance of HMMT consisting of the X ,
k, and S from IHMD, and we also set τ0 = τ . We denote this
instance by IHMMT. The reduction takes linear time in the size
of HMD. We seek to find the minimum threshold τ1 ≥ τ0
such that no length-k substring of Z is a τ1-ghost. Then IHMD

has a positive answer if and only if the answer τ1 of IHMMT

is equal to τ0 = τ . The statement thus follows.

Observe that a pattern U is a τ -ghost if and only if
τ ∈ (FreqX(U),FreqZ(U)]. Therefore, the minimal number
of τ -ghosts is not monotonous in τ . On the contrary, the
minimal number of τ -ghosts is zero when τ = 0 and all
patterns are already frequent (i.e., they appear at least τ times),
or when τ > n and the threshold is so high that no pattern can
ever become a τ -ghost. In between, the minimal number of
τ -ghosts increases whenever τ equals the frequency of some
patterns in X , and then slowly decreases again. We will use
this behavior, and the fact that HMD is NP-hard, to construct
a string for which we cannot determine in polynomial time
whether τ1 = τ0 or τ1 > ατ0 (and for which we can prove
that τ1 6∈ [τ0 + 1, ατ0]), implying inapproximability.

Theorem 4. There is no α-approximation algorithm for
HMMT, for any α ≥ 1, unless P=NP.

Proof. Let X be an arbitrary string and S be the set of
sensitive patterns as defined in HMD. Further, let T be the
length-(k − 2) suffix of X and Z be a string obtained by
replacing the #’s of X . From this instance of HMD, we will
construct an instance of HMMT consisting of a string Y and
a set S ′ of sensitive patterns, so that if an α-approximation
algorithm existed for HMMT, we could decide HMD in
polynomial time. We define Y over Σ ∪ {#,&} to be

Y = X(&&T)τ0&(#T&)d(α−1)τ0e.

Let R be the set of all strings &sT , with s ∈ Σ. We define
the dictionary of sensitive patterns be S ′ = S ∪ R. Note
that we need to replace all #’s in (#T&)d(α−1)τ0e by &’s
in order not to introduce any sensitive patterns. However,
doing so increases the number of &T& patterns (and all
other newly created patterns) from τ0 to dατ0e. Therefore,
if τ = τ0, then the number of τ -ghosts in Z equals that
in Z(&&T)τ0&(&T&)d(α−1)τ0e, because the additional new
patterns were already occurring at least τ times in Y . However
if τ0 < τ ≤ dατ0e, then there will always be at least one
τ -ghost, namely &T&. Recall that deciding HMD is NP-
complete. Therefore it is NP-complete to decide whether or
not τ1 = τ0 or τ1 > dατ0e. We conclude that there exists no
α-approximation algorithm for HMMT, unless P=NP.

V. EXACT ALGORITHMS FOR HM

We resort to ILP to design exact algorithms for HMD and
HM. In particular, we show that both problems are fixed-
parameter tractable for several combinations of parameters.

We say that the length-(k− 1) substring U preceding an
occurrence of # in X , and the length-(k− 1) substring V
following it, form its context UV . Recall that there are δ
occurrences of # in X , and that any two occurrences are at
least k letters apart, so UV is in Σ2k−2. We assign to every
context UV a unique identifier (id). We write #i for # in
X if its context UV has id i. A string N ∈ Σk is critical if
it may become a τ -ghost, i.e., if an additional occurrence of
N can be created by replacing some # by a letter in Σ and
FreqX(N) ∈ [τ − kδ, τ − 1]. This is because the frequency of
N cannot increase by more than kδ, and the frequency of N

4

in X must be less than τ for N to become τ -ghost. We assign
to each critical string N a unique id `, and denote it by N`.
We introduce the following parameters:
γ number of distinct contexts present in X;
δi number of occurrences of letter #i in X , for i ∈ [γ];
λ number of distinct critical length-k strings;
αi

`,j additional number of occurrences of N` introduced
by replacing a #i with a letter j ∈ Σ, for ` ∈ [λ];

e` difference (τ − 1)− FreqX(N`), for ` ∈ [λ].
Intuitively, e` is the budget we have for N`: the number of
its additional occurrences we can afford. Since replacing an
occurrence of #i by j ∈ Σ adds k new strings in Σk, αi

`,j

counts how many of them are equal to N`. Let xi,j be the
number of times we replace #i by j ∈ Σ, and let F ⊆ [γ]×Σ
be the set of forbidden replacements: (i, j) ∈ F if and only if
replacing #i by j introduces a sensitive pattern. To determine
whether there exists a way of replacing all #’s with letters
without introducing any sensitive patterns nor τ -ghosts, we
need to find a solution x ∈ Zγ×|Σ| to the following problem:

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F∑
i∈[γ],j∈Σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(1)

The first and fourth constraints ensure that each # is
replaced by exactly one letter, the second constraint that we
do not reinstate any sensitive patterns, and the third constraint
that we do not introduce any τ -ghosts. This is clearly an ILP
with m = γ|Σ| variables and at most 2m+λ+γ constraints.
The well-known algorithm by Megiddo [23] solves the ILP
problem in linear time in the number constraints (resp. vari-
ables) when the number of variables (resp. constraints) is upper
bounded by a constant. Hence, although HMD is NP-complete
in general, if appropriate subsets of parameters are bounded
by a constant, we can count on polynomial-time solutions.

To show that HMD takes polynomial time in certain cases,
let us start with a general preprocessing step. We construct
a static dictionary with O(1) access time of the letters in X
and the letters in strings of S . The value (id) of each key
(letter) is chosen from {1, . . . , k|S| + n}. This construction
can be done in O(n+ k|S|) time using perfect hashing [13].
We can thus lexicographically sort all length-k substrings of
X and all length-k strings in S (viewed as strings over letter
id’s) using radix sort in O(nk+ |S|k) time, and construct two
dictionaries, one for X and one for S, as follows. For X , we
construct a trie of all its non-sensitive length-k substrings. The
value of each key (non-sensitive pattern) is its multiplicity in
X . We also construct a trie of all strings in S in a similar
fashion (no multiplicities are relevant here, so no values are
stored). We store in both tries, for every node, the first letter
on each of its outgoing edges in a static dictionary with O(1)
access time [13]. Thus both trie dictionaries support O(k)
access time: if a length-k string Q is given as a query, we
first convert it to a string I(Q) of id’s in O(k) time using the
letter dictionary, and then search for I(Q) from the root of the
tries in O(k) time. The total construction time is O(nk+|S|k).

When δ = O(1), the brute-force algorithm checking all
possible ways to replace the #’s with letters of Σ runs in
polynomial time. There are |Σ|δ ways to replace the #’s. Each
of these ways generates δk new length-k strings for which
we have to check if they are sensitive or create a τ -ghost.
Checking if they are sensitive can be done using the trie of S
in O(k) time per each length-k string. Counting the additional
number of occurrences of each length-k substring of X can be
done using the trie of X in O(k) time. Counting the number
of occurrences of each length-k string that does not occur in
X can be done by constructing a trie of all such strings (we
have at most δk of them per way), similar to the preprocessing
step. This gives O(nk + |S|k + |Σ|δδk2) time in total.

A problem with parameters p and q is fixed-parameter
tractable (FPT) in p if there exists a function f and a
polynomial P such that the problem has time complexity
O(f(p) · P (q)) [11]. The following theorem shows three
scenarios where an FPT algorithm exists for HMD.

Theorem 5. HMD is fixed-parameter tractable if
(a) |Σ| = O(1) and γ = O(1); or
(b) |Σ| = O(1) and k = O(1); or
(c) k = O(1) and λ = O(1).

Proof. We first perform the above-mentioned preprocessing.
(a) We will solve this case by constructing and solving the
ILP in Eq. 1. We can count the number of occurrences of
each length-k substring of X using the trie of X (and thus
determine e` for these strings) in O(nk) time. The id i of each
context #i and its number δi of occurrences can be determined
within the same complexity using a similar preprocessing: this
is possible because the length of every context is 2k − 2 =
O(k). Finally, the αi`,j’s and F can be computed in O(γ|Σ|k2)
total time as follows. For a context #i and a letter j ∈ Σ, we
create k new length-k strings when replacing #i with j, each
of which is either sensitive (in which event we add (i, j) to
F) or non-sensitive (we increase αi`,j by 1). Checking if they
are sensitive can be done using the trie of S in O(k) time per
length-k string. Counting the additional number of occurrences
of a critical length-k substring of X can be done using the trie
of X in O(k) time. Counting the number of occurrences of
a critical length-k string that does not occur in X (note that
e` = τ − 1 for these strings) can be done by constructing a
trie of all such strings, similar to the preprocessing step. The
ILP is thus constructed in O(nk + |S|k + γ|Σ|k2) total time.
Since the number of variables in the ILP is m = γ|Σ| = O(1)
and solving ILP’s is fixed-parameter linear in the number of
variables [23], HMD is FPT if γ and |Σ| are fixed.

(b) Since every context has length 2k − 2 and also |Σ| =
O(1) and k = O(1), we have that γ ≤ |Σ|2k−2 = O(1). Thus,
if k and |Σ| are fixed, we are in case (a), and HMD is FPT.

(c) If k = O(1) and λ = O(1), the numbers of constraints
and variables in the ILP are not necessarily upper bounded
by a constant. Therefore, we cannot directly solve the ILP
in polynomial time. However, since the λ critical length-k
strings contain overall at most λk different letters, we actually
only need to distinguish among a bounded number of letters.

5

Since we do not need to consider explicitly the remaining
letters, we rather represent them by a single special letter. Let
σ ⊆ Σ denote the set of letters contained in critical length-k
strings. Note that critical length-k strings can be determined
as described in part (a). Thus σ can be specified and indexed
using perfect hashing [13] within the same time complexity.
We introduce a new letter $ representing all the letters in Σ\σ,
and we denote by F|$ the set of forbidden replacements where
all pairs (i, j) ∈ F with j ∈ Σ \ σ are collapsed in a single
pair (i, $). We thus need to find a solution x ∈ Zγ×(|σ|+1) for:

xi,j ≥ 0 ∀i ∈ [γ], j ∈ σ ∪ {$}
xi,j = 0 ∀(i, j) ∈ F|$∑
i∈[γ],j∈σ αi`,jxi,j ≤ e` ∀` ∈ [λ]∑
j∈σ∪{$} xi,j = δi ∀i ∈ [γ]

(2)

This new ILP can be constructed in O(nk + |S|k + γ|Σ|k2)
time, like Eq. 1. Since the ILP has only γ(|σ| + 1) = O(1)
variables, HMD is FPT for fixed k and λ [23]. We can obtain
a solution to the original problem by replacing $ by any letter
in Σ \ σ that does not create a sensitive pattern.

We can decide in polynomial time if HM has a solution:
we check all |Σ| letter replacements at each of the δ positions
where a # occurs. If, at each position, there exists at least
one letter replacement that does not create a sensitive pattern,
then HM has a solution. Thus, without loss of generality we
assume that HM always has a solution. To minimize τ -ghosts
in Z, we define a binary variable z`, ` ∈ [λ], which is equal
to 1 (resp. 0) when N` has (resp. has not) become τ -ghost.
The ILP formulation for HM is to find x ∈ Zγ×|Σ| so as to:
Minimize

∑λ
`=1 z` subject to

xi,j ≥ 0 ∀(i, j) ∈ [γ]× Σ

xi,j = 0 ∀(i, j) ∈ F
z` ≥ 0 ∀` ∈ [λ]∑
i∈[γ],j∈Σ αi`,jxi,j − kδz` ≤ e` ∀` ∈ [λ]∑
j∈Σ xi,j = δi ∀i ∈ [γ]

(3)

Note that, in the ILP of Eq. 3,
∑
i∈[γ],j∈Σ α

i
`,jxi,j−kδz` ≤

e` if and only if N` is not a τ -ghost or z` = 1.

Theorem 6. HM is fixed-parameter tractable if
(a) |Σ| = O(1), γ = O(1), and λ = O(1); or
(b) k = O(1) and λ = O(1).

Proof. (a) We can obtain the ILP of Eq. 3 in O(λ) time from
the ILP of Eq. 1, which can be constructed in O(nk+ |S|k+
γ|Σ|k2) time; see the proof of Theorem 5(a). The ILP of Eq. 3
has at most 2m+ 2λ+ γ constraints and m+ λ = |Σ|γ + λ
variables. Therefore HM is FPT if |Σ|, γ and λ are fixed [23].

(b) Similar to the ILP of Eq. 2 (see Theorem 5(c)), we can
reduce the alphabet Σ to the letters of the critical length-k
strings and a special letter $. This new minimization ILP has
γ(|σ|+1)+λ ≤ (kλ+1)2k−1+λ = O(1) variables. Therefore
HM is FPT if k and λ are fixed [23].

Acknowledgments. MIUR Grant 20174LF3T8 AHeAD; University of Pisa
”PRA – Progetti di Ricerca di Ateneo” (Institutional Research Grants) Grant

PRA 20202021 26 “Metodi Informatici Integrati per la Biomedica”; and
NWO Gravitation-grant NETWORKS-024.002.003.

REFERENCES

[1] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequential and spatiotem-
poral patterns. TKDE, 22(12):1709–1723, 2010.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pages
3–14, 1995.

[3] H. Arimura and T. Uno. An efficient polynomial space and polynomial
delay algorithm for enumeration of maximal motifs in a sequence. J.
Comb. Optim., 13(3):243–262, 2007.

[4] G. Bernardini, H. Chen, A. Conte, R. Grossi, G. Loukides, N. Pisanti,
S. P. Pissis, and G. Rosone. String sanitization: A combinatorial
approach. In ECML/PKDD, pages 627–644, 2019.

[5] G. Bernardini, H. Chen, G. Loukides, N. Pisanti, S. P. Pissis, L. Stougie,
and M. Sweering. String sanitization under edit distance. In CPM, pages
7:1–7:14, 2020.

[6] E. Bier, R. Chow, P. Golle, T. H. King, and J. Staddon. The rules
of redaction: Identify, protect, review (and repeat). IEEE Secur. Priv.,
7(6):46–53, 2009.

[7] F. Biessmann, D. Salinas, S. Schelter, P. Schmidt, and D. Lange. “deep”
learning for missing value imputationin tables with non-numerical data.
In CIKM, pages 2017–2025, 2018.

[8] M. Chen, X. Yu, and Y. Liu. Mining moving patterns for predicting
next location. Inf. Syst., 54(C):156–168, 2015.

[9] N. Cristianini and M. W. Hahn. Introduction to computational genomics
- a case studies approach. Cambridge University Press, 2007.

[10] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compres-
sion using antidictionaries. In ICALP, pages 261–270, 1999.

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms.
Springer Publishing Company, Incorporated, 1st edition, 2015.

[12] C. Fiot, A. Laurent, and M. Teisseire. Approximate sequential patterns
for incomplete sequence database mining. In FUZZ, pages 1–6, 2007.

[13] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table
with O(1) worst case access time. J. ACM, 31(3):538–544, 1984.

[14] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results:
Motivation, examples, and implications. J. ACM, 25(3):499–508, 1978.

[15] A. Gkoulalas-Divanis and G. Loukides. Revisiting sequential pattern
hiding to enhance utility. In KDD, pages 1316–1324, 2011.

[16] J. W. Grzymala-Busse and M. Hu. A comparison of several approaches
to missing attribute values in data mining. In Rough Sets and Current
Trends in Computing, pages 378–385, 2001.

[17] V. Guralnik and G. Karypis. A scalable algorithm for clustering
sequential data. In ICDM, pages 179–186, 2001.

[18] IUPAC-IUB Commission on Biochemical Nomenclature. Abbreviations
and symbols for nucleic acids, polynucleotides, and their constituents.
Biochemistry, 9(20):4022–4027, 1970.

[19] U. Keich and P. A. Pevzner. Finding motifs in the twilight zone.
Bioinformatics, 18(10):1374–1381, 2002.

[20] D. C. Koboldt, K. M. Steinberg, David E. Larson, Richard K. Wilson,
and Elaine R. Mardis. The next-generation sequencing revolution and
its impact on genomics. Cell, 155(1):27–38, 2013.

[21] R. Li, C. Yu, Y. Li, T. Wah Lam, S. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinfor-
matics, 25(15):1966–1967, 2009.

[22] H. M. Martinez. An efficient method for finding repeats in molecular
sequences. Nucleic Acids Research, 11(13):4629–4634, 1983.

[23] N. Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31(1):114–127, 1984.

[24] S. Rangavittal, R. S. Harris, M. Cechova, M. Tomaszkiewicz, R. Chikhi,
K. D. Makova, and P. Medvedev. RecoverY: k-mer-based read classifi-
cation for Y-chromosome-specific sequencing and assembly. Bioinfor-
matics, 34(7):1125–1131, 2017.

[25] W. Shen, J. Wang, and J. Han. Sequential pattern mining. In C. C.
Aggarwal and J. Han, editors, Frequent Pattern Mining, pages 261–282.
2014.

[26] M. Spiliopoulou. Managing interesting rules in sequence mining. In
PKDD, pages 554–560, 1999.

[27] Y. Wu, C. Chiang, and A. L. P. Chen. Hiding sensitive association rules
with limited side effects. TKDE, 19(1):29–42, 2007.

[28] J. J. Ying, W. Lee, T. Weng, and V. S. Tseng. Semantic trajectory mining
for location prediction. In SIGSPATIAL, pages 34–43, 2011.

6

Abstract
Efficient Construction of Hierarchical
Overlap Graphs
Sung Gwan Park1, Bastien Cazaux2, Kunsoo Park1, Eric Rivals2

1Department of Computer Science, Seoul National University, Korea
2LIRMM, Montpellier University, Montpellier, France
*Corresponding author: rivals@lirmm.fr

Abstract
The hierarchical overlap graph (HOG for short) is an overlap encoding graph that
efficiently represents overlaps from a given set P of n strings. An existing algorithm
constructs the HOG in O(||P ||+ n2) time and O(||P ||+ n×min(n, max{|s| : s ∈ P})
space, where ||P || is the sum of lengths of the n strings in P . We present a new
algorithm of O(||P || log n) time and O(||P ||) space to compute the HOG, which
exploits the segment tree data structure. We also propose an alternative algorithm
using O(||P || log n

log log n) time and O(||P ||) space in the standard word RAM model of
computation.

Work published in SPIRE 2020 conference: [1].

References
[1] Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals. Efficient

construction of hierarchical overlap graphs. In Christina Boucher and Sharma V.
Thankachan, editors, String Processing and Information Retrieval, pages 277–290,
Orlando, FL, Oct. 2020. Springer International Publishing.

1

Extended abstract
On the realizations of sequence graphs
Sammy Khalife1*, Yann Ponty1, Laurent Bulteau2

1LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
2LIGM, CNRS, Université Gustave Eiffel, 77454 Marne-la-Vallée, France
*Corresponding author: khalife@lix.polytechnique.fr

Abstract
Several language models rely on an assumption modeling each local context as a (potentially ori-
ented) bag of words, and have proven to be very efficient baselines. Sequence graphs are the natural
structures encoding their information. However, a sequence graph may have several realizations as
a sequence, leading to a degree of ambiguity. Several combinatorial problems are presented, de-
pending on three levels of generalisation (window size, graph orientation, and weights). We present
some complexity results and a dynamic programming algorithm to measure this level of ambiguity.

Keywords
Sequence Algorithms — Graphs — Natural Language Models — Inverse problem

1. Introduction
The automated treatment of familiar objects, either natural or artifacts, always
relies on a translation into entities manageable by computer programs. However,
the correspondence between the object to be treated and ”its” representation is
not necessarily one-to-one. The representations used for learning algorithms are no
exception to this rule. In particular, natural language words and textual documents
representations are essential for several tasks, including document classification [1],
role labelling [2], and named entity recognition [3]. The traditional models based
on pointwise mutual information, or graph-of-words (GOW), [4, 5, 6], supplement
the content of bag-of-words (TF, TFIDF) with statistics of co-occurrences within
a window of fixed size w, introduced to mitigate the degree of ambiguity. Several
models [7, 8, 9, 10] also use the same type of information and constitute strong
baselines for natural language processing. While these representations are more
precise than the traditional bag-of-words (e.g Parikh vectors), they still induce some
level of ambiguity, i.e. a given graph can represent several sequences. Our study is
thus motivated by a quantification of the level of ambiguity, seen as an algorithmic
problem, coupled with an empirical assessment of the consequences of ambiguity for
the representations.

2. Definitions and problem statement
Let x = x1, x2, ..., xp be a finite sequence of discrete elements among a finite vocab-
ulary X. Without loss of generality, we can suppose that X = {1, ..., n}. In the
following, let Ip = {1, ..., p}. This motivates the following definition:

1

Realizations of sequence graphs

Linux is not UNIX but

(a) No ambiguity (w = 3)

Linux is not UNIX but

(b) Ambiguity (w = 2)
Figure 1. Sequence graphs (or graphs-of-words) built for the sentence “Linux is not
UNIX but Linux” using window sizes 3 (a) and 2 respectively (b). In the second
case, the sequence graph is ambiguous, since any circular permutation of the words
admits the same representation.

Definition 1 G = (V,E) is the graph of the sequence x with window size w ∈ N∗ if
and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , |k − k′| ≤ w − 1 xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced with

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I2
p , k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j. (2)

Finally, a weighted sequence graph G is endowed with a matrix Π(G) = (πij) such
that

πij = Card {(k, k′) ∈ I2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j} (3)

We say that x is a w-admissible sequence for G (or a realization of G), if G is the
graph of sequence x with window size w.

The natural integers πij represent the number of co-occurrences of i and j in a
window of size w. Hence, the graph of sequence is unique. An linear time algorithm
to construct a weighted sequence digraph is obtained by sliding a window of size
w over the sequence and incrementing the counter of presence of two elements in
the window. This construction defines a correspondence between the sequence set
X? into the graph set G : φw : X? → G, x 7→ Gw(x). Based on these definitions, we
consider the following problems:

Problem 1 (Weighted-Realizable (W-Realizable))
Input: Possibly directed graph G, matrix weights Π, window size w
Output: True if (G,Π) is the w-sequence graph of some sequence x, False otherwise.

Problem 2 (Unweighted-Realizable (U-Realizable))
Input: Possibly directed graph G, window size w
Output: True if G is the w-sequence graph of some sequence x, False otherwise.

We denote D-Realizable (resp. G-) the restricted version of Realizable where
the input graph G is directed (resp. undirected), and W-Realizable (resp. U-
) the restricted version of Realizable where the input graph G is weighted
(resp. unweighted), possibly in combination with the D- or G- variants. We write
Realizablew for the case where w is a fixed (given) constant. We also consider the
variants of W-Realizable, denoted WG-Realizable and WD-Realizable where

2

Realizations of sequence graphs

the input graph is restricted to be respectively undirected and directed. We define
UG-Realizable and UD-Realizable similarly. Finally, we write (WG-, WD-,
...)Realizablew for the case where w is a fixed strictly positive integer.

Problem 3 (Unweighted-NumRealizations (U-NumRealizations))
Input: Possibly directed graph G, window size w
Output: The number of realizations of G, i.e. preimages of G through φw such
that |{x ∈ X? | φw(x) = G}| if finite, or +∞ otherwise.

Problem 4 (Weighted-NumRealizations (W-NumRealizations))
Input: Possibly directed graph G, matrix weights Π, window size w
Output: The number of realizations of G in the weighted sense.

Similarly, we use the same prefix for the directed or undirected versions of (D-,
G-, i.e. DU- for directed and unweighted):

DW Directed weighted DU Directed unweighted
GW Undirected weighted GU Undirected unweighted

We also denote NumRealizationsw for the case where w is a fixed strictly positive
integer. Note that NumRealizations strictly generalizes the previous one, as
Realizable can be solved by testing the nullity of the number of suitable realization
computed by NumRealizations.

3. Main theoretical results
3.1 Complete characterization of 2-sequence graphs

Table 1. Complexity for various instances of our problems (w = 2)
NumRealizations2 Realizable2

Variation Complexity #Sequences Complexity Characterization

GU P {0,+∞} P G connected
GW #P-hard {0, 1} ∪ 2N∗ P ψ(G) (semi) Eulerian
DU P {0, 1,+∞} P Theorem 1
DW P N P ψ(G) (semi) Eulerian

Definition 2 Let G be a digraph, and R+(G) be the weighted DAG obtained from
R(G), such that the weight of an edge is attributed the number of distinct arcs from
two strongly connected components in G.

Theorem 1 Let G = (V,E) be an unweighted digraph. G is a 2-sequence graph if
and only if R+(G) is a directed path and its weights are all equal to 1.

3

Realizations of sequence graphs

3.2 General case: main complexity results

Table 2. Complexity for various instances of our problems (w ≥ 3)
NumRealizationsw Realizablew NumRealizations Realizable

Variation Complexity Complexity Complexity Complexity

GU P P W[1]-hard W[1]-hard
GW #P-hard ∀w ≥ 3 NP-hard ∀w ≥ 3 #P-hard NP-hard
DU Open Open W[1]-hard W[1]-hard
DW #P-hard NP-hard #P-hard NP-hard

4. Dynamic programming formulation for NumRealizationsw

The recursion proceeds by extending a partial sequence, initially set to be empty,
keeping track of for represented edges along the way. Namely, consider Nw[Π, p,u]
to be the number of w-admissible sequences of length p for the graph G = (V,E),
respecting a weight matrix Π = (πij)i,j∈V 2 , preceded by a sequence of nodes u :=
(u1, . . . , u|u|) ∈ V ?. It can be shown that, for all ∀p ≥ 1, Π ∈ N|V 2| and u ∈ V ≤w,
Nw[Π, p,u] obeys the following formula:

Nw [Π, p,u] =
∑
v∈V

Nw

[
Π′(u,v), p− 1, (u1, ..., u|u|, v)

]
if |u| < w − 1

Nw

[
Π′(u,v), p− 1, (u2, ..., uw−1, v)

]
if |u| = w − 1

(4)

with Π′(u,v) := (πij − |{k ∈ [1, |u|] | (uk, v) = (i, j)}|)(i,j)∈V 2 . The base case of this
recurrence corresponds to p = 0, and is defined as

∀ Π, Nw[Π, 0,u] =
{

1 if Π = (0)(i,j)∈V 2

0 otherwise.
(5)

The total number of admissible sequences is then found in Nw[Π, p, ε], i.e. setting u
to the empty prefix ε, allowing the sequence to start from any node.

The recurrence can be computed in O(|V |w ×
∏

i,j∈V 2(πi,j + 1)) time using
memoization, for p the sequence length. The complexity can be refined by noting
that: ∑

i,j∈V 2

πi,j ≤ w × p

It follows that, in the worst-case scenario,
∏

i,j∈V 2(πi,j + 1) ∈ O(2w p). Thus, it is
still possible to compute Nw[Π, p, u1:w] for “reasonable” values of p and w such as
p ≤ 500 and w ≤ 10.

Acknowledgments
We thank Guillaume Fertin for his suggestions and questions which helped to orientate
this work in the right direction.

4

Realizations of sequence graphs

References
[1] Konstantinos Skianis, Fragkiskos Malliaros, and Michalis Vazirgiannis. Fusing

document, collection and label graph-based representations with word embed-
dings for text classification. In Proceedings of the Twelfth Workshop on Graph-
Based Methods for Natural Language Processing (TextGraphs-12), pages 49–58,
2018.

[2] Michael Roth and Kristian Woodsend. Composition of word representations
improves semantic role labelling. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 407–413,
2014.

[3] David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[4] Jaume Gibert, Ernest Valveny, and Horst Bunke. Dimensionality reduction
for graph of words embedding. In International Workshop on Graph-Based
Representations in Pattern Recognition, pages 22–31. Springer, 2011.

[5] François Rousseau, Emmanouil Kiagias, and Michalis Vazirgiannis. Text catego-
rization as a graph classification problem. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1702–1712, 2015.

[6] Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao Bao, Lihong Wang,
Yangqiu Song, and Qiang Yang. Large-scale hierarchical text classification with
recursively regularized deep graph-cnn. In Proceedings of the 2018 World Wide
Web Conference, pages 1063–1072, 2018.

[7] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[8] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pages 1532–1543,
2014.

[9] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A
latent variable model approach to pmi-based word embeddings. Transactions of
the Association for Computational Linguistics, 4:385–399, 2016.

[10] Arora Sanjeev, Liang Yingyu, and Ma Tengyu. A simple but tough-to-beat
baseline for sentence embeddings. Proceedings of ICLR, 2017.

5

	Abstract
	References
	Introduction
	Methods
	Results and Discussion
	Multiscale-aware variant call format
	Genotyping performance
	Comparison with reference-based variant callers
	Comparison with state of the art genome graph tools

	Analysis of variation on top of locally defined references
	Discussion

	Acknowledgments
	References
	Introduction
	Methods
	Results and Discussion
	Acknowledgments
	References
	References
	Abstract
	References
	References
	References
	References
	References
	References
	Introduction
	Materials & Methods
	PanCov-Correct
	Pcon & Br
	Pcon
	Br

	Result
	PanCov-correct
	Pcon & Br

	Conclusion
	References
	Introduction
	Methods
	Results
	References
	References
	Introduction
	Preliminaries and Problem Statement
	HMd is NP-complete
	The Unique-Weights Bin Packing problem
	Overview of the Reduction from UWBP to HMd

	HM is Hard to Approximate
	Exact Algorithms for HM
	References
	References
	Introduction
	Definitions and problem statement
	Main theoretical results
	Complete characterization of 2-sequence graphs
	General case: main complexity results

	Dynamic programming formulation for NumRealizationsw
	References

